All-dielectric metasurfaces made from arrays of high index nanoresonators supporting strong magnetic dipole modes have emerged as a low-loss alternative to plasmonic metasurfaces. Here we use oxygen-doped single-walled carbon nanotubes (SWCNTs) as quantum emitters and couple them to silicon metasurfaces to study effects of the magnetic dipole modes of the constituent nanoresonators on the photoluminescence (PL) of individual SWCNTs. We find that when in resonance, the magnetic mode of the silicon nanoresonators can lead to a moderate average PL enhancement of 0.
View Article and Find Full Text PDF