Publications by authors named "Anthony R Di Carluccio"

Described is a simple, in vitro, dye dilution-based method for measuring antigen-specific CD4 T cell proliferation in human peripheral blood mononuclear cells (PBMCs). The development of stable, non-toxic, fluorescent dyes such as carboxyfluorescein succinimidyl ester (CFSE) allows for rare, antigen-specific T cells to be distinguished from bystanders by diminution in fluorescent staining, as detected by flow cytometry. This method has the following advantages over alternative approaches: (i) it is very sensitive to low-frequency T cells, (ii) no knowledge of the antigen or epitope is required, (iii) the phenotype of the responding cells can be analyzed, and (iv) viable, responding cells can be sorted and used for further analysis, such as T cell cloning.

View Article and Find Full Text PDF

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells.

View Article and Find Full Text PDF

The accurate prediction of human CD8 T-cell epitopes has great potential clinical and translational implications in the context of infection, cancer and autoimmunity. Prediction algorithms have traditionally focused on calculated peptide affinity for the binding groove of MHC-I. However, over the years it has become increasingly clear that the ultimate T-cell recognition of MHC-I-bound peptides is governed by many contributing factors within the complex antigen presentation pathway.

View Article and Find Full Text PDF

CD8 T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins.

View Article and Find Full Text PDF