Publications by authors named "Anthony Pickering"

Introduction: Over half of patients who spend >48 hours in the intensive care unit (ICU) are fed via a nasogastric (NG) tube. Current guidance recommends continuous delivery of feed throughout the day and night. Emerging evidence from healthy human studies shows that NG feeding in an intermittent pattern (rather than continuous) promotes phasic hormonal, digestive and metabolic responses that are important for effective nutrition.

View Article and Find Full Text PDF

The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species.

View Article and Find Full Text PDF

Background: Shingles (herpes zoster), caused by reactivation of the varicella-zoster virus, is usually diagnosed and managed in primary care. The lifetime risk of shingles in the general population is approximately 30%, and it can have a detrimental effect on quality of life. There has been little qualitative research about patient experience and understanding of shingles.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted beta-blockade using esmolol after severe traumatic brain injury may help reduce secondary brain damage by managing the body's stress response.
  • A study involved 16 adults with severe traumatic brain injury, determining the optimal starting dose of esmolol to safely lower their heart rate without causing harmful side effects.
  • Results indicated that the optimal starting dosage was 10 μg/kg/min, with a low 12.5% mortality rate at 6 months and minimal adverse effects observed.
View Article and Find Full Text PDF

Our understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE)-containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and nonhuman primates using single-unit recordings.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) responds to noxious and innocuous sensory inputs, and integrates them to coordinate appropriate behavioral reactions. However, the role of the projections of ACC neurons to subcortical areas and their influence on sensory processing are not fully investigated. Here, we identified that ACC neurons projecting to the contralateral claustrum (ACC) preferentially respond to contralateral mechanical sensory stimulation.

View Article and Find Full Text PDF

Traumatic brain injury is a leading cause of death and disability worldwide. Interventions that mitigate secondary brain injury have the potential to improve outcomes for patients and reduce the impact on communities and society. Increased circulating catecholamines are associated with worse outcomes and there are supportive animal data and indications in human studies of benefit from beta-blockade after severe traumatic brain injury.

View Article and Find Full Text PDF

Nociceptors are a class of primary afferent neurons that signal potentially harmful noxious stimuli. An increase in nociceptor excitability occurs in acute and chronic pain conditions. This produces abnormal ongoing activity or reduced activation thresholds to noxious stimuli.

View Article and Find Full Text PDF

The nucleus of the solitary tract (NTS) contains pro-opiomelanocortin (POMC) neurons that are 1 of the 2 major sources of β-endorphin in the brain. The functional role of these NTS POMC neurons in nociceptive and cardiorespiratory function is debated. We have shown that NTS POMC optogenetic activation produces bradycardia and transient apnoea in a working heart-brainstem preparation and chemogenetic activation with an engineered ion channel (PSAM) produced opioidergic analgesia in vivo.

View Article and Find Full Text PDF

Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular, projections from the preoptic area of the hypothalamus to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor.

View Article and Find Full Text PDF

Torpor is a hypothermic, hypoactive, hypometabolic state entered into by a wide range of animals in response to environmental challenge. This review summarises the current understanding of torpor. We start by describing the characteristics of the wide-ranging physiological adaptations associated with torpor.

View Article and Find Full Text PDF

Twenty-five years ago, a new physiological preparation called the working heart-brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches.

View Article and Find Full Text PDF

Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) - rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions.

View Article and Find Full Text PDF

Background: Pain is a complex polygenic trait whose common genetic underpinnings are relatively ill-defined due in part to challenges in measuring pain as a phenotype. Pain sensitivity can be quantified, but this is difficult to perform at the scale required for genome wide association studies (GWAS). Existing GWAS of pain have identified surprisingly few loci involved in nociceptor function which contrasts strongly with rare monogenic pain states.

View Article and Find Full Text PDF

Objective: To determine if oesophago-gastro-duodenoscopy (OGD) generates increased levels of aerosol in conscious patients and identify the source events.

Design: A prospective, environmental aerosol monitoring study, undertaken in an ultraclean environment, on patients undergoing OGD. Sampling was performed 20 cm away from the patient's mouth using an optical particle sizer.

View Article and Find Full Text PDF

Fibromyalgia is a prevalent pain condition that is associated with cognitive impairments including in attention, memory, and executive processing. It has been proposed that fibromyalgia may be caused by altered central pain processing characterised by a loss of endogenous pain modulation. We tested whether attentional analgesia, where cognitive engagement diminishes pain percept, was attenuated in patients with fibromyalgia (n = 20) compared with matched healthy controls (n = 20).

View Article and Find Full Text PDF

The loss of descending inhibitory control is thought critical to the development of chronic pain but what causes this loss in function is not well understood. We have investigated the dynamic contribution of prelimbic cortical neuronal projections to the periaqueductal grey (PrL-P) to the development of neuropathic pain in rats using combined opto- and chemogenetic approaches. We found PrL-P neurons to exert a tonic inhibitory control on thermal withdrawal thresholds in uninjured animals.

View Article and Find Full Text PDF

A key controversy in the COVID-19 pandemic has been over staff safety in health and social care settings. Anaesthetists and intensivists were anticipated to be at the highest risk of work-related infection due to involvement in airway management and management of critical illness and therefore wear the highest levels of personal protective equipment (PPE) in the hospital. However, the data clearly show that those working in anaesthesia and critical care settings are at lower risk of infection, harm and death from COVID-19 than colleagues working on the wards.

View Article and Find Full Text PDF

The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior.

View Article and Find Full Text PDF

Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia.

View Article and Find Full Text PDF

Background: Most common anesthetic agents have been implicated in causing neurodegeneration in the developing animal brain, leading to warnings regarding their use in children. The hypothesis of this study was that exposure to general anesthesia and surgery before 4 yr would associate with adverse neurodevelopmental outcomes at age 7 to 16 yr.

Methods: This cohort study comprised 13,433 children enrolled in the Avon Longitudinal Study of Parents and Children, a prospective, population-based birth cohort born between 1991 and 1993 in southwest England.

View Article and Find Full Text PDF

: Sugar is routinely used to comfort neonates undergoing painful procedures, and animal studies have shown that sucrose increases the time to withdrawal from painful stimuli. However, there are no published studies examining the effects of sweet substances on heat pain thresholds and percept in adult humans. : Healthy adult volunteers (n=27, aged 18-48 years) were recruited to a controlled, double-blind, randomised, cross-over study to characterise the effect of tasting solutions of equivalent sweetness (10% sucrose and 0.

View Article and Find Full Text PDF

Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons.

View Article and Find Full Text PDF