The reinforcing mechanisms of single-walled carbon nanotube-reinforced epoxy composites were studied by micromechanics models. The modeling results obtained from both Halpin-Tsai and Mori-Tanaka models are in good agreement with the experimental results. It has been found that these two models are also applicable to other single-walled carbon nanotube-reinforced, amorphous-polymer composites, given the existence of efficient load transfer.
View Article and Find Full Text PDFNanoclay-reinforced agarose nanocomposite films with varying weight concentration ranging from 0 to 80% of nanoclay were prepared, and structurally and mechanically characterized. Structural characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that pre-exfoliated clay platelets were re-aggregated into particles (stacked platelets) during the composite preparation process.
View Article and Find Full Text PDF