Publications by authors named "Anthony P Pugsley"

Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4-5 kJ/mol/protomer in the N domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy.

View Article and Find Full Text PDF

The Klebsiella lipoprotein pullulanase (PulA) is exported to the periplasm, triacylated, and anchored via lipids in the inner membrane (IM) prior to its transport to the bacterial surface through a type II secretion system (T2SS). X-Ray crystallography and atomistic molecular dynamics (MD) simulations of PulA in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) model membrane provided an unprecedented molecular view of an N-terminal unstructured tether and the IM lipoprotein retention signal, and revealed novel interactions with the IM via N-terminal immunoglobulin-like domains in PulA. An efficiently secreted nonacylated variant (PulANA) showed similar peripheral membrane association during MD simulations, consistent with the binding of purified PulANA to liposomes.

View Article and Find Full Text PDF

Like several other large, multimeric bacterial outer membrane proteins (OMPs), the assembly of the Klebsiella oxytoca OMP PulD does not rely on the universally conserved β-barrel assembly machinery (BAM) that catalyses outer membrane insertion. The only other factor known to interact with PulD prior to or during outer membrane targeting and assembly is the cognate chaperone PulS. Here, in vitro translation-transcription coupled PulD folding demonstrated that PulS does not act during the membrane insertion of PulD, and engineered in vivo site-specific cross-linking between PulD and PulS showed that PulS binding does not prevent membrane insertion.

View Article and Find Full Text PDF

Secretins, the outer membrane components of several secretion systems in Gram-negative bacteria, assemble into channels that allow exoproteins to traverse the membrane. The membrane-inserted, multimeric regions of PscC, the Pseudomonas aeruginosa type III secretion system secretin, and PulD, the Klebsiella oxytoca type II secretion system secretin, were purified after cell-free synthesis and their structures analyzed by single particle cryoelectron microscopy. Both homomultimeric, barrel-like structures display a "cup and saucer" architecture.

View Article and Find Full Text PDF

The outer membrane portal of the Klebsiella oxytoca type II secretion system, PulD, is a prototype of a family of proteins, the secretins, which are essential components of many bacterial secretion and pilus assembly machines. PulD is a homododecamer with a periplasmic vestibule and an outer chamber on either side of a membrane-spanning region that is poorly resolved by electron microscopy. Membrane insertion involves the formation of a dodecameric membrane-embedded intermediate.

View Article and Find Full Text PDF

Proteins called secretins form large multimeric complexes that are essential for macromolecular transit across the outer membrane of Gram-negative bacteria. Evidence suggests that the channels formed by some secretin complexes are not tightly closed, but their permeability properties have not been well characterized. Here, we used cell-free synthesis coupled with spontaneous insertion into liposomes to investigate the permeability of the secretin PulD.

View Article and Find Full Text PDF

Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system.

View Article and Find Full Text PDF

The Klebsiella oxytoca lipoprotein PulS might function as either or both a pilot and a docking factor in the outer membrane targeting and assembly of the Type II secretion system secretin PulD. In the piloting model, PulS binds to PulD monomers and targets them to the outer membrane via the lipoprotein sorting pathway components LolA and LolB. In this model, PulS also protects the PulD monomers from proteolysis during transit through the periplasm.

View Article and Find Full Text PDF

Secretins form large multimeric complexes in the outer membranes of many Gram-negative bacteria, where they function as dedicated gateways that allow proteins to access the extracellular environment. Despite their overall relatedness, different secretins use different specific and general mechanisms for their targeting, assembly, and membrane insertion. We report that all tested secretins from several type II secretion systems and from the filamentous bacteriophage f1 can spontaneously multimerize and insert into liposomes in an in vitro transcription-translation system.

View Article and Find Full Text PDF

In Gram-negative bacteria, type II secretion systems (T2SS) assemble inner membrane proteins of the major pseudopilin PulG (GspG) family into periplasmic filaments, which could drive protein secretion in a piston-like manner. Three minor pseudopilins PulI, PulJ and PulK are essential for protein secretion in the Klebsiella oxytoca T2SS, but their molecular function is unknown. Here, we demonstrate that together these proteins prime pseudopilus assembly, without actively controlling its length or secretin channel opening.

View Article and Find Full Text PDF

Unlabelled: In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ).

View Article and Find Full Text PDF

A crucial aspect of the functionality of bacterial type II secretion systems is the targeting and assembly of the outer membrane secretin. In the Klebsiella oxytoca type II secretion system, the lipoprotein PulS, a pilotin, targets secretin PulD monomers through the periplasm to the outer membrane. We present the crystal structure of PulS, an all-helical bundle that is structurally distinct from proteins with similar functions.

View Article and Find Full Text PDF

Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS.

View Article and Find Full Text PDF

The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer.

View Article and Find Full Text PDF

The C-terminal core domain of the secretin PulD from Klebsiella oxytoca forms heat-resistant dodecameric complexes within less than 10min in an Escherichia coli in vitro transcription-translation system containing liposomes, and is toxic when made in the cytoplasm without a signal peptide. Random mutagenesis of DNA encoding this region of PulD revealed that amino acid changes throughout almost its entire length abolished toxicity. Most of the amino acid substitutions engendered by the mutations retarded or abolished assembly of the dodecameric secretin complex in vitro and/or in the periplasm.

View Article and Find Full Text PDF

The mechanosensitive channel MscL of the plasma membrane of bacteria is a homopentamer involved in the protection of cells during osmotic downshock. The MscL protein, a polypeptide of 136 residues, was recently shown to require YidC to be inserted in the inner membrane of E. coli.

View Article and Find Full Text PDF

The gene (cpo) encoding the extracellular protease CPI produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica CP76 was cloned, and its nucleotide sequence was analyzed. The cpo gene encodes a 733-residue protein showing sequence similarity to metalloproteases of the M4 family. The type II secretion apparatus was shown to be responsible for secretion of the haloprotease CPI.

View Article and Find Full Text PDF

The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS.

View Article and Find Full Text PDF

The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands.

View Article and Find Full Text PDF

The ultimate membrane localization and function of most of the 185 predicted Pseudomonas aeruginosa PAO1 lipoproteins remain unknown. We constructed a fluorescent lipoprotein, CSFP(OmlA)-ChFP, by fusing the signal peptide and the first four amino acids of the P. aeruginosa outer membrane lipoprotein OmlA to the monomeric red fluorescent protein mCherry (ChFP).

View Article and Find Full Text PDF

Synthesis of the Klebsiella oxytoca outer membrane secretin PulD, or its membrane-associated core domain, in a liposome-supplemented Escherichia coli in vitro transcription-translation system resulted in the formation of multimers that appeared as typical dodecameric secretin rings when examined by negative-stain electron microscopy. Cryo-electron microscopy of unstained liposomes and differential extraction by urea indicated that the secretin particles were inserted into the liposome membranes. When made in the presence of the detergent Brij-35, PulD and the core domain were synthesized as monomers.

View Article and Find Full Text PDF

We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD.

View Article and Find Full Text PDF

Previous studies demonstrated that targeting of the dodecameric secretin PulD to the Escherichia coli outer membrane is strictly dependent on the chaperone-like pilotin PulS. Here, we report that PulD multimerization and membrane association in strains producing PulS were unaffected when the levels of the essential outer membrane assembly factor YaeT(Omp85) were reduced by controlled expression of a paraBAD-yaeT transcriptional fusion. This behaviour contrasted markedly to that of the trimeric porin LamB, which remained monomeric under these conditions.

View Article and Find Full Text PDF

The pseudopilin PulG is an essential component of the pullulanase-specific type II secretion system from Klebsiella oxytoca. PulG is the major subunit of a short, thin-filament pseudopilus, which presumably elongates and retracts in the periplasm, acting as a dynamic piston to promote pullulanase secretion. It has a signal sequence-like N-terminal segment that, according to studies with green and red fluorescent protein chimeras, anchors unassembled PulG in the inner membrane.

View Article and Find Full Text PDF