Publications by authors named "Anthony P Ford"

Article Synopsis
  • The study investigates the effects of β-adrenoceptor acting drugs on cognitive function in healthy volunteers and Parkinson's disease patients.
  • Clenbuterol showed improvements in cognitive tasks and pupil reactions, while pindolol had negative effects on performance.
  • The findings suggest that clenbuterol might enhance cognitive abilities via stimulation of β2-adrenoceptors in the central nervous system.
View Article and Find Full Text PDF

Gefapixant (MK-7264, RO4926219, AF-219) is a first-in-class P2X3 antagonists being developed to treat refractory or unexplained chronic cough. The initial single- and multiple-dose safety, tolerability, and pharmacokinetics of gefapixant at doses ranging from 7.5 to 1800 mg were assessed in four clinical trials.

View Article and Find Full Text PDF

Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, β-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(E/EC) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints.

View Article and Find Full Text PDF

Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α-AR, α-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications.

View Article and Find Full Text PDF

Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats.

View Article and Find Full Text PDF

Gefapixant is a P2X3-receptor antagonist being developed for treatment of refractory or unexplained chronic cough. Four phase 1 studies were conducted in healthy participants that bridged the early-phase gefapixant formulation (F01) to the phase 3 (F04A) and intended commercial (F04B) formulations. In addition, food and proton pump inhibitor (PPI) coadministration effects on gefapixant exposure were assessed.

View Article and Find Full Text PDF

Gefapixant is the approved generic name for a compound also known as MK-7264, and prior to that AF-219 and RO-4926219. It is the first-in-class clinically developed antagonist for the P2X3 subtype of trimeric ionotropic purinergic receptors, a family of ATP-gated excitatory ion channels, showing nanomolar potency for the human P2X3 homotrimeric channel and essentially no activity at related channels devoid of P2X3 subunits. As the first P2X3 antagonist to have progressed into clinical studies it has now progressed to the point of successful completion of Phase 3 investigations for the treatment of cough, and the NDA application is under review with US FDA for treatment of refractory chronic cough or unexplained chronic cough.

View Article and Find Full Text PDF

Introduction: Chronic cough is a highly problematic symptom for patients with idiopathic pulmonary fibrosis (IPF); limited therapeutic options are available. We evaluated gefapixant, a P2X3 receptor antagonist, for the treatment of chronic cough in IPF.

Methods: This randomized, double-blind, placebo-controlled, crossover study included subjects with IPF.

View Article and Find Full Text PDF

Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life.

View Article and Find Full Text PDF

Hyperreflexia of the peripheral chemoreceptors is a potential contributor of apnoeas of prematurity (AoP). Recently, it was shown that elevated P2X3 receptor expression was associated with elevated carotid body afferent sensitivity. Therefore, we tested whether P2X3 receptor antagonism would reduce AoP known to occur in newborn rats.

View Article and Find Full Text PDF

Background: Gefapixant is a P2X3 receptor antagonist that has shown promise for the treatment of refractory and unexplained chronic cough. The aim of this study was to evaluate the efficacy of gefapixant compared with placebo after 12 weeks of treatment for refractory chronic cough or unexplained chronic cough.

Methods: We did a 12-week, phase 2b, randomised, double-blind, placebo-controlled study in patients with refractory chronic cough or unexplained chronic cough aged 18-80 years who were recruited from 44 primarily outpatient pulmonologist or allergist sites in the UK and the USA.

View Article and Find Full Text PDF

Background And Objectives: Gefapixant has previously demonstrated efficacy in the treatment of refractory chronic cough at a high daily dose. The current investigations explore efficacy and tolerability of gefapixant, a P2X3 receptor antagonist, for the treatment of chronic cough using a dose-escalation approach.

Materials And Methods: Two randomised, double-blind, placebo-controlled, crossover, dose-escalation studies recruited participants with refractory chronic cough.

View Article and Find Full Text PDF

We evaluated the effect of gefapixant on cough reflex sensitivity to evoked tussive challenge.In this phase 2, double-blind, two-period study, patients with chronic cough (CC) and healthy volunteers (HV) were randomised to single-dose gefapixant 100 mg or placebo in a crossover fashion. Sequential inhalational challenges with ATP, citric acid, capsaicin and distilled water were performed 1, 3 and 5 h after dosing.

View Article and Find Full Text PDF

Background And Purpose: The P2X3 receptor is an ATP-gated ion channel expressed by sensory afferent neurons and is used as a target to treat chronic sensitisation conditions. The first-in-class, selective P2X3 and P2X2/3 receptor antagonist, the diaminopyrimidine MK-7264 (gefapixant), has progressed to Phase III trials for refractory or unexplained chronic cough. We used patch clamp to elucidate the pharmacology and kinetics of MK-7264 and rat models of hypersensitivity and hyperalgesia to test its efficacy on these conditions.

View Article and Find Full Text PDF

In view of the high proportion of individuals with resistance to antihypertensive medication and/or poor compliance or tolerance of this medication, new drugs to treat hypertension are urgently needed. Here we show that peripheral chemoreceptors generate aberrant signaling that contributes to high blood pressure in hypertension. We discovered that purinergic receptor P2X3 (P2rx3, also known as P2x3) mRNA expression is upregulated substantially in chemoreceptive petrosal sensory neurons in rats with hypertension.

View Article and Find Full Text PDF

This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply-demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity.

View Article and Find Full Text PDF

Background: Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored.

View Article and Find Full Text PDF

A great deal of basic and applied physiology and pharmacology in sensory and autonomic neuroscience has teased apart mechanisms that drive normal perception of mechanical, thermal and chemical signals and convey them to CNS, the distinction of fiber types and receptors and channels that mediate them, and how they may become dysfunctional or maladaptive in disease. Likewise, regulation of efferent autonomic traffic to control organ reflexes has been well studied. In both afferent and efferent limbs, a wide array of potential therapeutic mechanisms has surfaced, some of which have progressed into clinic, if not full regrastration.

View Article and Find Full Text PDF

The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e.

View Article and Find Full Text PDF

Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts.

View Article and Find Full Text PDF

Background: Preclinical studies suggest that P2X3 receptors are expressed by airway vagal afferent nerves and contribute to the hypersensitisation of sensory neurons. P2X3 receptors could mediate sensitisation of the cough reflex, leading to chronic cough. We aimed to investigate the efficacy of a first-in-class oral P2X3 antagonist, AF-219, to reduce cough frequency in patients with refractory chronic cough.

View Article and Find Full Text PDF

Objectives: To evaluate whether P2X3 receptors (P2X3R) are expressed in the bladder urothelium and to determine their possible function in modulating purinergic detrusor contractions in the rat urinary bladder.

Materials And Methods: The expression of urothelial receptors was determined using conventional immunohistochemistry in bladders from normal Sprague-Dawley rats. The urothelial layer was removed by incubation with protamine, and disruption of the urothelium was confirmed using haematoxylin and eosin staining on bladder sections.

View Article and Find Full Text PDF

Introduction: Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containing trimeric channels to cancer pain is.

View Article and Find Full Text PDF