Live fluorescent microscopy of whole-mount rodent retinal explants has proved to be extremely valuable for understanding dynamic events during retinogenesis. However, to obtain three-dimensional images with high-quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as two photon, with a higher level of depth penetrance. As an alternative, we report a retinal live-imaging protocol using slice cultures that are suitable for capturing discrete cellular events during retinal development and differentiation.
View Article and Find Full Text PDFBackground: Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations.
View Article and Find Full Text PDFMitochondria are incredibly dynamic organelles that undergo continuous fission and fusion events to control morphology, which profoundly impacts cell physiology including cell cycle progression. This is highlighted by the fact that most major human neurodegenerative diseases are due to specific disruptions in mitochondrial fission or fusion machinery and null alleles of these genes result in embryonic lethality. To gain a better understanding of the pathophysiology of such disorders, tools for the in vivo assessment of mitochondrial dynamics are required.
View Article and Find Full Text PDF