Publications by authors named "Anthony Opipari"

Article Synopsis
  • - This study assessed the safety, tolerability, and pharmacokinetics of DFV890, an oral NLRP3 inhibitor, in 122 healthy participants through a three-part trial involving single and multiple doses.
  • - DFV890 was well-tolerated with no serious adverse events, showing a dose-proportional increase in exposure in the adjusted formulation, while food intake significantly affected its pharmacokinetic profile.
  • - The drug effectively inhibited IL-1β release, maintaining about 90% inhibition over 24 hours with specific dosing regimens, suggesting its potential for treating conditions involving NLRP3 overactivation.
View Article and Find Full Text PDF

Background And Aims: Inflammatory bowel diseases (IBD) are characterized by mucosal inflammation and sequential fibrosis formation, but the exact role of the hyperactive NLRP3 inflammasome in these processes is unclear. Thus, we studied the expression and function of the NLRP3 inflammasome in the context of inflammation and fibrosis in IBD.

Methods: We analysed intestinal NLRP3 expression in mucosal immune cells and fibroblasts from IBD patients and NLRP3-associated gene expression via single-cell RNA sequencing and microarray analyses.

View Article and Find Full Text PDF

Background: Oral and rectal formulations of 5-aminosalicylic acid are the first-line therapy for mild-to-moderate, distal ulcerative colitis (UC), but such a treatment is not effective in one-third of patients. Niclosamide is a small molecule, developed and approved as an orally administered drug to treat helminthic infections, with an excellent safety profile. Preclinical work showed that niclosamide is an anti-inflammatory agent, thereby providing the rationale to explore its safety and efficacy in patients with UC.

View Article and Find Full Text PDF

T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (T17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy.

View Article and Find Full Text PDF

Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose.

View Article and Find Full Text PDF

Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 T cells in umbilical cord and peripheral blood. We found that naive CD4 T cells, but not memory T cells, expressed high levels of chemokine CXCL8.

View Article and Find Full Text PDF

Neuroblastoma is a cancer of neural crest stem cell (NCSC) lineage. Signaling pathways that regulate NCSC differentiation have been implicated in neuroblastoma tumorigenesis. This is exemplified by MYCN oncogene targets that balance proliferation, differentiation, and cell death similarly in normal NCSC and in high-risk neuroblastoma.

View Article and Find Full Text PDF

Integration of signaling and metabolic pathways enables and sustains lymphocyte function. Whereas metabolic changes occurring during T cell activation are well characterized, the metabolic demands of differentiated T lymphocytes are largely unexplored. In this study, we defined the bioenergetics of Th17 effector cells generated in vivo.

View Article and Find Full Text PDF

Objectives: To identify whether mast cell densities in vulvar biopsies from the vestibule are associated with vulvodynia.

Methods: We enrolled 100 women aged 19 to 59 years with confirmed vulvodynia cases, 100 racially matched controls, and 100 black control women. All had vulvar biopsies performed at the 7 o'clock position of the vestibule, which were then immunostained to detect c-KIT protein.

View Article and Find Full Text PDF

Background: Resveratrol inhibits the growth of ovarian carcinoma cells in vitro through the inhibition of glucose metabolism and the induction of both autophagy and apoptosis. In the current study, we investigated the metabolic and therapeutic effects of resveratrol in vivo.

Methods: A fluorescent xenograft mouse model of ovarian cancer was used.

View Article and Find Full Text PDF

Mitochondria are multifunctional organelles that play a central role in cellular homeostasis. Severe mitochondrial dysfunction leads to life-threatening diseases in humans and accelerates the aging process. Surprisingly, moderate reduction of mitochondrial function in different species has anti-aging effects.

View Article and Find Full Text PDF

The coinhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly upregulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation.

View Article and Find Full Text PDF

The 2006 National Institutes of Health (NIH) Consensus paper presented recommendations by the Ancillary Therapy and Supportive Care Working Group to support clinical research trials in chronic graft-versus-host disease (GVHD). Topics covered in that inaugural effort included the prevention and management of infections and common complications of chronic GVHD, as well as recommendations for patient education and appropriate follow-up. Given the new literature that has emerged during the past 8 years, we made further organ-specific refinements to these guidelines.

View Article and Find Full Text PDF

Unlabelled: In neuroblastoma, MYCN genomic amplification and segmental chromosomal alterations including 1p or 11q loss of heterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis of affected genomic regions suggests that these errors arise by nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB), abnormalities in NHEJ have not been implicated in neuroblastoma pathogenesis.

View Article and Find Full Text PDF

: Inflammasomes are multiprotein complexes that process procytokines into mature forms of interleukin 1β and interleukin 18 and induce pyroptotic cell death. Evidence linking NLRP3, NLRC4, and NLRP6 inflammasomes to intestinal inflammation is reviewed to provide a basis to understand how the innate immune system discriminates pathogenic bacteria from commensal bacteria and shapes microbial ecology. Inflammasomes have a direct and important role limiting colitis by directing effective immune responses against pathogenic bacterial infections in the intestine.

View Article and Find Full Text PDF

T-cell activation requires increased ATP and biosynthesis to support proliferation and effector function. Most models of T-cell activation are based on in vitro culture systems and posit that aerobic glycolysis is employed to meet increased energetic and biosynthetic demands. By contrast, T cells activated in vivo by alloantigens in graft-versus-host disease (GVHD) increase mitochondrial oxygen consumption, fatty acid uptake, and oxidation, with small increases of glucose uptake and aerobic glycolysis.

View Article and Find Full Text PDF

Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5'-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation.

View Article and Find Full Text PDF

Ku70 was originally described as an autoantigen, but it also functions as a DNA repair protein in the nucleus and as an antiapoptotic protein by binding to Bax in the cytoplasm, blocking Bax-mediated cell death. In neuroblastoma (NB) cells, Ku70's binding with Bax is regulated by Ku70 acetylation such that increasing Ku70 acetylation results in Bax release, triggering cell death. Although regulating cytoplasmic Ku70 acetylation is important for cell survival, the role of nuclear Ku70 acetylation in DNA repair is unclear.

View Article and Find Full Text PDF

For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo.

View Article and Find Full Text PDF

Ku70 was first characterized as a nuclear factor that binds DNA double-strand breaks in nonhomolog end-joining DNA repair. However, recent studies have shown that Ku70 is also found in the cytoplasm and binds Bax, preventing Bax-induced cell death. We have shown that, in neuroblastoma cells, the binding between Ku70 and Bax depends on the acetylation status of Ku70, such that, when Ku70 is acetylated, Bax is released from Ku70, triggering cell death.

View Article and Find Full Text PDF

Objectives: Upregulation of glycolysis has been demonstrated in multiple tumor types. Glucose deprivation results in diminished intracellular ATP; this is counteracted by AMPK activation during energy deficiency to restore ATP levels. We sought to determine whether glucose deprivation could induce cytotoxicity in ovarian cancer cells through activation of AMPK, and whether AMPK activators could mimic glucose deprivation induced cytotoxicity.

View Article and Find Full Text PDF

Background: Persistent infection with high-risk human papillomavirus (HPV) types is necessary for the development of high-grade cervical dysplasia and cervical carcinoma. The presence of HPV DNA in the blood of cervical cancer patients has been reported; however, whether HPV DNA is detectable in the blood of patients with pre-invasive cervical disease is unclear.

Objectives: The objectives of this study were to determine if HPV 16 and HPV 18 DNA could be detected in the serum of colposcopy clinic patients, and if serum HPV detection was associated with grade of cervical disease and HPV cofactors.

View Article and Find Full Text PDF

Cells generate adenosine triphosphate (ATP) by glycolysis and by oxidative phosphorylation (OXPHOS). Despite the importance of having sufficient ATP available for the energy-dependent processes involved in immune activation, little is known about the metabolic adaptations that occur in vivo to meet the increased demand for ATP in activated and proliferating lymphocytes. We found that bone marrow (BM) cells proliferating after BM transplantation (BMT) increased aerobic glycolysis but not OXPHOS, whereas T cells proliferating in response to alloantigens during graft-versus-host disease (GVHD) increased both aerobic glycolysis and OXPHOS.

View Article and Find Full Text PDF

Clusterin is a ubiquitously expressed glycoprotein with multiple binding partners including IL-6, Ku70, and Bax. Clusterin blocks apoptosis by binding to activated Bax and sequestering it in the cytoplasm, thereby preventing Bax from entering mitochondria, releasing cytochrome c, and triggering apoptosis. Because increased clusterin expression correlates with aggressive behavior in tumors, clusterin inhibition might be beneficial in cancer treatment.

View Article and Find Full Text PDF

Background: Chemoresistance is the major factor limiting long-term treatment success in patients with epithelial ovarian cancers. Most cytotoxic drugs kill cells through apoptosis; therefore, defective execution of apoptotic pathways results in a drug-resistant phenotype in many tumor types.

Methods: A panel of ovarian cancer cell lines was screened for expression and function of the apoptosome components Apaf-1 and caspase-9.

View Article and Find Full Text PDF