Low-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (CF) or decafluorobutane (CF) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization.
View Article and Find Full Text PDFFocused ultrasound (FUS) is a promising non-invasive therapeutic approach that can be used to generate thermal and non-thermal bioeffects. Several non-thermal FUS therapies rely on FUS-induced oscillations of microbubbles (MBs), a phenomenon referred to as cavitation. Cavitation monitoring in real time is essential to ensure both the efficacy and the safety of FUS therapies.
View Article and Find Full Text PDFCavitation dose monitoring plays a key role in ultrasound drug delivery to the brain. The use of capacitive micromachined ultrasonic transducer (CMUT) technology has a great potential for passive cavitation detection (PCD).Here, a circular (diameter 7 mm) CMUT centered at 5 MHz was designed to be inserted into a therapeutic transducer (1.
View Article and Find Full Text PDFThe passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model.
View Article and Find Full Text PDFThe therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption.
View Article and Find Full Text PDFThe P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB.
View Article and Find Full Text PDFTumor-specific drug delivery is a major challenge for the pharmaceutical industry. Nanocarrier systems have been widely investigated to increase and control drug delivery to the heterogeneous tumor microenvironment. Classically, the uptake of nanocarriers by solid tumor tissues is mainly mediated by the enhanced permeability and retention effect (EPR).
View Article and Find Full Text PDFFocused ultrasound (FUS) is a non-invasive and highly promising method for targeted and reversible blood-brain barrier permeabilization. Numerous preclinical studies aim to optimize the localized delivery of drugs using this method in rodents and non-human primates. Several clinical trials have been initiated to treat various brain diseases in humans using simultaneous BBB permeabilization and drug injection.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate molecules from blood circulation to the brain. Focused ultrasound (FUS) with microbubbles can create a local and reversible detachment of the TJs.
View Article and Find Full Text PDFIntroduction: Glioblastoma (GBM) is the most common and deadly form of primary brain tumor. Between 30 % and 60 % of GBM are characterized by overexpression of the Epidermal Growth Factor Receptor (EGFR). The anti-EGFR antibody Cetuximab (CTX) showed a favorable effect for EGFR colorectal cancer but failed to demonstrate efficacy for GBM.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically.
View Article and Find Full Text PDFThe management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood-brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e.
View Article and Find Full Text PDFFocused ultrasound in combination with microbubbles (FUS) provides an effective means to locally enhance the delivery of therapeutics to the brain. Translational and quantitative imaging techniques are needed to noninvasively monitor and optimize the impact of FUS on blood-brain barrier (BBB) permeability in vivo. Positron-emission tomography (PET) imaging using [F]2-fluoro-2-deoxy-sorbitol ([F]FDS) was evaluated as a small-molecule (paracellular) marker of blood-brain barrier (BBB) integrity.
View Article and Find Full Text PDFGene therapy represents a powerful therapeutic tool to treat diseased tissues and provide a durable and effective correction. The central nervous system (CNS) is the target of many gene therapy protocols, but its high complexity makes it one of the most difficult organs to reach, in part due to the blood-brain barrier that protects it from external threats. Focused ultrasound (FUS) coupled with microbubbles appears as a technological breakthrough to deliver therapeutic agents into the CNS.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is one of the most common and aggressive malignant primary brain tumors in adults. The treatment of GBM is limited by the blood-brain barrier (BBB), which limits the diffusion of appropriate concentrations of therapeutic agents at the tumor site. Among experimental therapies, photo-thermal therapy (PTT) mediated by nanoparticles is a promising strategy.
View Article and Find Full Text PDFThe blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas.
View Article and Find Full Text PDFThe multidrug resistance-associated protein 2 (MRP2) mediates the biliary excretion of drugs and metabolites. [Tc]mebrofenin may be employed as a probe for hepatic MRP2 activity because its biliary excretion is predominantly mediated by this transporter. As the liver uptake of [Tc]mebrofenin depends on organic anion-transporting polypeptide (OATP) activity, a safe protocol for targeted inhibition of hepatic MRP2 is needed to study the intrinsic role of each transporter system.
View Article and Find Full Text PDFA combination of microbubbles (MBs) and ultrasound (US) is an emerging method for noninvasive and targeted enhancement of anti-cancer drug uptake. This method showed an increase local drug extravasation in tumor tissue while reducing the systemic adverse effects in various tumor models. The present study aims to evaluate the effectiveness of this approach for Nab-paclitaxel delivery in a pancreatic tumor model.
View Article and Find Full Text PDFLiver fibrosis is the common result of chronic liver disease. Diagnosis and grading liver fibrosis for patient management is mainly based on blood tests and hepatic puncture-biopsy, which is particularly invasive. Quantitative ultrasound (QUS) techniques provide insight into tissue microstructure and are based on the frequency-based analysis of the signals from biologic tissues.
View Article and Find Full Text PDFThe gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2018
The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband.
View Article and Find Full Text PDFFocused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet's sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core.
View Article and Find Full Text PDFContrast-enhanced ultrasound (CEUS) is a non-invasive imaging technique extensively used for blood perfusion imaging of various organs. This modality is based on the acoustic detection of gas-filled microbubble contrast agents used as intravascular flow tracers. Recent efforts aim at quantifying parameters related to the enhancement in the vascular compartment using time-intensity curve (TIC), and at using these latter as indicators for several pathological conditions.
View Article and Find Full Text PDF