Publications by authors named "Anthony N Shaw"

Background: Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate.

View Article and Find Full Text PDF

Many tumors display a high rate of glucose utilization, as evidenced by 18-F-2-deoxyglucose PET imaging. One potential advantage of catabolizing glucose through glycolysis at a rate that exceeds bioenergetic need is that the growing cell can redirect the excess glycolytic end product pyruvate toward lipid synthesis. Such de novo lipid synthesis is necessary for membrane production and lipid-based posttranslational modification of proteins.

View Article and Find Full Text PDF

The invention of a new class of naphtho[1,2-d]imidazole thrombopoietin mimics based on a pharmacophore hypothesis for small-molecule thrombopoietic agonists is discussed. Parallel array synthesis and purification techniques allowed for the rapid exploration of structure-activity relationships within this class and for the improvement in TPO mimetic potencies and efficacies.

View Article and Find Full Text PDF

High-throughput screening has resulted in the discovery of thiosemicarbazone thrombopoietin mimics. A shared pharmacophore hypothesis between this series and a previously identified class, the pyrazol-4-ylidenehydrazines, led to the rapid optimization of both potency and efficacy of the thiosemicarbazones. The application of high-throughput chemistry and purification techniques allowed for the rapid elucidation of structure-activity relationships.

View Article and Find Full Text PDF