Publications by authors named "Anthony Milin"

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 61. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer. Nevertheless, KRAS mutations account for only around 15% of KRAS-mutated cancers, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations.

View Article and Find Full Text PDF

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target.

View Article and Find Full Text PDF
Article Synopsis
  • Liquid-liquid phase separation (LLPS) of RNA-protein complexes is crucial for the function of membraneless organelles (MLOs), which are sensitive to cellular changes.* -
  • This study explored how divalent cations affect RNA coacervates, finding that changes in ion concentration influence the properties and behaviors of these RNA droplets.* -
  • The research suggests that variations in ionic conditions can switch the type of coacervates formed and adjust their microenvironments, offering insights into how the biochemical environment of RNA coacervates is regulated in cells.*
View Article and Find Full Text PDF

Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation.

View Article and Find Full Text PDF

Intracellular ribonucleoprotein (RNP) granules are membrane-less droplet organelles that are thought to regulate posttranscriptional gene expression. While liquid-liquid phase separation may drive RNP granule assembly, the mechanisms underlying their supramolecular dynamics and internal organization remain poorly understood. Herein, we demonstrate that RNA, a primary component of RNP granules, can modulate the phase behavior of RNPs by controlling both droplet assembly and dissolution in vitro.

View Article and Find Full Text PDF

Protein synthesis rates can affect gene expression and the folding and activity of the translation product. Interactions between the nascent polypeptide and the ribosome exit tunnel represent one mode of regulating synthesis rates. The SecM protein arrests its own translation, and release of arrest at the translocon has been proposed to occur by mechanical force.

View Article and Find Full Text PDF