Publications by authors named "Anthony Marcello"

Article Synopsis
  • The GA4GH Phenopacket Schema, released in 2022 and approved as a standard by ISO, allows the sharing of clinical and genomic data, including phenotypic descriptions and genetic information, to aid in genomic diagnostics.
  • Phenopacket Store Version 0.1.19 offers a collection of 6668 phenopackets linked to various diseases and genes, making it a crucial resource for testing algorithms and software in genomic research.
  • This collection represents the first extensive case-level, standardized phenotypic information sourced from medical literature, supporting advancements in diagnostic genomics and machine learning applications.
View Article and Find Full Text PDF

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms.

View Article and Find Full Text PDF

Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as , , and that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as , , and that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies.

View Article and Find Full Text PDF

Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as , , and that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes , , and , that encode parts of the skeletal muscle sarcomere, cause muscle diseases affecting skeletal muscle, such as the distal arthrogryposis (DA) syndromes and skeletal myopathies.

View Article and Find Full Text PDF

EpiVax, Inc., is an early-stage informatics and immunology biotechnology company in Providence, Rhode Island. It applies computational tools to harness immunity in three major areas: immunomodulation, biotherapeutic immunogenicity risk assessment and de-risking, and vaccine development.

View Article and Find Full Text PDF