Publications by authors named "Anthony M Poole"

Duplication is a major route for the emergence of new gene functions. However, the emergence of new gene functions via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence.

View Article and Find Full Text PDF

Summary: Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure.

View Article and Find Full Text PDF

The nuclear pore is structurally conserved across eukaryotes as are many of the pore's constituent proteins. The transmembrane nuclear pore proteins GP210 and NDC1 span the nuclear envelope holding the nuclear pore in place. Orthologues of GP210 and NDC1 in Arabidopsis were investigated through characterisation of T-DNA insertional mutants.

View Article and Find Full Text PDF

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides.

View Article and Find Full Text PDF

Masting, the synchronous, highly variable flowering across years by a population of perennial plants, has been reported to be precipitated by various factors including nitrogen levels, drought conditions, and spring and summer temperatures. However, the molecular mechanism leading to the initiation of flowering in masting plants in particular years remains largely unknown, despite the potential impact of climate change on masting phenology. We studied genes controlling flowering in the alpine snow tussock Chionochloa pallens (Poaceae), a strongly masting perennial grass.

View Article and Find Full Text PDF

Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained.

View Article and Find Full Text PDF

Background: Trichomonas vaginalis, the causative agent of a prevalent urogenital infection in humans, is an evolutionarily divergent protozoan. Protein-coding genes in T. vaginalis are largely controlled by two core promoter elements, producing mRNAs with short 5' UTRs.

View Article and Find Full Text PDF

For evaluating the deepest evolutionary relationships among proteins, sequence similarity is too low for application of sequence-based homology search or phylogenetic methods. In such cases, comparison of protein structures, which are often better conserved than sequences, may provide an alternative means of uncovering deep evolutionary signal. Although major protein structure databases such as SCOP and CATH hierarchically group protein structures, they do not describe the specific evolutionary relationships within a hierarchical level.

View Article and Find Full Text PDF

Advances in bioinformatics and high-throughput genetic analysis increasingly allow us to predict the genetic basis of adaptive traits. These predictions can be tested and confirmed, but the molecular-level changes - i.e.

View Article and Find Full Text PDF

Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately.

View Article and Find Full Text PDF

Background: The human protozoan parasite Trichomonas vaginalis is an organism of interest for understanding eukaryotic evolution. Despite having an unusually large genome and a rich gene repertoire among protists, spliceosomal introns in T. vaginalis appear rare: only 62 putative introns have been annotated in this genome, and little or no experimental evidence exists to back up these predictions.

View Article and Find Full Text PDF

It is widely assumed that there is a clear distinction between eukaryotes, with cell nuclei, and prokaryotes, which lack nuclei. This suggests the evolution of nuclear compartmentation is a singular event. However, emerging knowledge of the diversity of bacterial internal cell structures suggests the picture may not be as black-and-white as previously thought.

View Article and Find Full Text PDF

The recent discovery of the Lokiarchaeota and other members of the Asgard superphylum suggests that closer analysis of the cell biology and evolution of these groups may help shed light on the origin of the eukaryote cell. Asgard lineages often appear in molecular phylogenies as closely related to eukaryotes, and possess "Eukaryote Signature Proteins" coded by genes previously thought to be unique to eukaryotes. This phylogenetic affinity to eukaryotes has been widely interpreted as indicating that Asgard lineages are "eukaryote-like archaea," with eukaryotes evolving from within a paraphyletic Archaea.

View Article and Find Full Text PDF

Mammalian diversification has coincided with a rapid proliferation of various types of noncoding RNAs, including members of both snRNAs and snoRNAs. The significance of this expansion however remains obscure. While some ncRNA copy-number expansions have been linked to functionally tractable effects, such events may equally likely be neutral, perhaps as a result of random retrotransposition.

View Article and Find Full Text PDF

Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.

View Article and Find Full Text PDF

A critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency.

View Article and Find Full Text PDF

Evolutionary arms races between pathogens and their hosts may be manifested as selection for rapid evolutionary change of key genes, and are sometimes detectable through sequence-level analyses. In the case of protein-coding genes, such analyses frequently predict that specific codons are under positive selection. However, detecting positive selection can be non-trivial, and false positive predictions are a common concern in such analyses.

View Article and Find Full Text PDF

In a recent article published in these pages, Bowman and colleagues propose that the ribosome represents a challenge to the RNA world model, a long-standing framework to explain the origin of DNA and genetically encoded proteins from a hypothetical RNA-based system. Specifically, they outline a scenario for the emergence and subsequent coevolution of the peptidyl transferase centre (PTC) of the ribosome with non-templated peptide products of this RNA through chemical evolution. They also propose that the PTC would have predated the emergence of enzymatic RNA replication, and that this in turn indicates that the RNA world never existed.

View Article and Find Full Text PDF

The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored.

View Article and Find Full Text PDF

All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route--the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage.

View Article and Find Full Text PDF

The genes responsible for antibiotics can spread between the three domains of life—Archaea, Bacteria and Eukaryotes.

View Article and Find Full Text PDF