Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation.
View Article and Find Full Text PDFObjective: Lymphangioleiomyomatosis (LAM) is a rare, destructive disease of the lungs with a limited number of determinants of disease activity, which are a critical need for clinical trials. FGF23 has been implicated in several chronic pulmonary diseases. We aimed to determine the association between serum FGF23 levels and pulmonary function in a cohort of patients with LAM.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a multisystem disease occurring in women of child-bearing age manifested by uncontrolled proliferation of smooth muscle-like "LAM" cells in the lungs. LAM cells bear loss-of-function mutations in tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2, causing hyperactivation of the proliferation promoting mammalian/mechanistic target of Rapamycin complex 1 pathway. Additionally, LAM-specific active renin-angiotensin system (RAS) has been identified in LAM nodules, suggesting this system potentially contributes to neoplastic properties of LAM cells; however, the role of this renin-angiotensin signaling is unclear.
View Article and Find Full Text PDFHermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions.
View Article and Find Full Text PDFLung allograft rejection results in the accumulation of low-molecular weight hyaluronic acid (LMW-HA), which further propagates inflammation and tissue injury. We have previously shown that therapeutic lymphangiogenesis in a murine model of lung allograft rejection reduced tissue LMW-HA and was associated with improved transplant outcomes. Herein, we investigated the use of 4-Methylumbelliferone (4MU), a known inhibitor of HA synthesis, to alleviate acute allograft rejection in a murine model of lung transplantation.
View Article and Find Full Text PDFBackground: Therapeutic lymphangiogenesis in an orthotopic lung transplant model has been shown to improve acute allograft rejection that is mediated at least in part through hyaluronan drainage. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expressed on the surface of lymphatic endothelial cells plays important roles in hyaluronan uptake. The impact of current immunosuppressive therapies on lung lymphatic endothelial cells is largely unknown.
View Article and Find Full Text PDFPatients with short telomeres and interstitial lung disease may have decreased chronic lung allograft dysfunction (CLAD)-free survival following lung transplantation. The relationship between post-transplant telomere length and outcomes following lung transplantation has not been characterised among all recipients, regardless of native lung disease. This was a single-centre prospective cohort study.
View Article and Find Full Text PDFHyaluronan (HA) is associated with innate immune response activation and may be a marker of allograft dysfunction in lung transplant recipients. This was a prospective, single center study comparing levels of bronchioalveolar lavage (BAL) and serum HA and the HA immobilizer LYVE-1 in lung transplant recipients with and without acute cellular rejection (ACR). Chronic lung allograft dysfunction (CLAD)-free survival was also evaluated based on HA and LYVE-1 levels.
View Article and Find Full Text PDFLymphatic vessels play an important role in health and in disease. In this study, we evaluated the effects of GSK3-β inhibition on lung lymphatic endothelial cells in vitro. Pharmacological inhibition and silencing of GSK3-β resulted in increased lymphangiogenesis of lung lymphatic endothelial cells.
View Article and Find Full Text PDFEndostatin is a naturally occurring collagen fragment with anti-angiogenic properties. We investigated the association between serum endostatin levels and DLCO in a cohort of patients with lymphangioleiomyomatosis (LAM). Associations of endostatin levels to clinical features of LAM were explored using logistic regression models.
View Article and Find Full Text PDFBackground: We have previously conducted the Sirolimus and Autophagy Inhibition in LAM (SAIL) trial, a phase 1 dose-escalation study of the combination of sirolimus and hydroxychloroquine in patients with lymphangioleiomyomatosis (LAM). The goal of the present study was to analyze sera from the SAIL trial to identify novel biomarkers that could shed light into disease pathogenesis and response to therapy.
Methods: We used the DiscoveryMAP platform from Rules Based Medicine to simultaneously measure 279 analytes in sera collected at each visit from subjects enrolled in the SAIL trial.
A subset of lymphangioleiomyomatosis (LAM) patients present with normal FEV1 and FVC but with reduced DLCO. Patients with an isolated reduction in DLCO in other diseases appear to be at higher risk for pulmonary hypertension and worse survival but this has not been previously described in LAM patients. To characterize the prevalence and clinical progression of LAM patients who present with discordantly low DLCO.
View Article and Find Full Text PDFLymphatic vessels are essential for the uptake of fluid, immune cells, macromolecules, and lipids from the interstitial space. During lung transplant surgery, the pulmonary lymphatic vessel continuum is completely disrupted, and, as a result, lymphatic drainage function is severely compromised. After transplantation, the regeneration of an effective lymphatic drainage system plays a crucial role in maintaining interstitial fluid balance in the lung allograft.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2017
Advances in our ability to identify lymphatic endothelial cells and differentiate them from blood endothelial cells have led to important progress in the study of lymphatic biology. Over the past decade, preclinical and clinical studies have shown that there are changes to the lymphatic vasculature in nearly all lung diseases. Efforts to understand the contribution of lymphatics and their growth factors to disease initiation, progression, and resolution have led to seminal findings establishing critical roles for lymphatics in lung biology spanning from the first breath after birth to asthma, tuberculosis, and lung transplantation.
View Article and Find Full Text PDFSomatic or germline mutations in the tuberous sclerosis complex (TSC) tumor suppressor genes are associated closely with the pathogenesis of lymphangioleiomyomatosis, a rare and progressive neoplastic disease that predominantly affects women in their childbearing years. Serum levels of the lymphangiogenic growth factor VEGF-D are elevated significantly in lymphangioleiomyomatosis. However, there are gaps in knowledge regarding VEGF-D dysregulation and its cellular origin in lymphangioleiomyomatosis.
View Article and Find Full Text PDF