Publications by authors named "Anthony Liou"

Background: Nasopharyngeal carcinoma (NPC) cells express high levels of epidermal growth factor receptor (EGFR). Cetuximab is an anti-EGFR monoclonal antibody that promotes natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) via engagement of CD16. We studied safety and efficacy of combining cetuximab with autologous expanded NK cells in patients with recurrent and/or metastatic NPC who had failed at least two prior lines of chemotherapy.

View Article and Find Full Text PDF

Objectives: Characterisation of tumor-infiltrating lymphocytes (TILS) population for cancer prognostication has enabled deeper understanding of tumor immune interactions in cancer immunology. We aim to examine the significance of both the density and functional status of NK cells in a cohort of Epstein Barr Virus (EBV) associated Nasopharyngeal Cancer (NPC) patients.

Methods: NK TILS of 50 NPC samples were quantified on immunohistochemistry and the density of NK TILS was correlated with clinical outcomes.

View Article and Find Full Text PDF

Scaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling and repair following injury. The present study tested the hypothesis that the implantation of brain-derived ECM would attenuate experimental traumatic brain injury (TBI) and explored potential underlying mechanisms. TBI was induced in mice by a controlled cortical impact (CCI).

View Article and Find Full Text PDF

Major characteristics of Alzheimer's disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined.

View Article and Find Full Text PDF

Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells.

View Article and Find Full Text PDF

Microglia represent rational but challenging targets for improving white matter integrity because of their dualistic protective and toxic roles. The present study examines the effect of Omega-3 polyunsaturated fatty acids (n-3 PUFAs) on microglial responses to myelin pathology in primary cultures and in the cuprizone mouse model of multiple sclerosis (MS), a devastating demyelination disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the two main forms of n-3 PUFAs in the brain, inhibited the release of nitric oxide and tumor necrosis factor-α from primary microglia upon IFN-γ and myelin stimulation.

View Article and Find Full Text PDF

Aims: To compare the neuroprotection of erythropoietin (EPO) and EPO fusion protein containing transduction domain derived from HIV TAT (EPO-TAT) against ischemic brain injury, inclusive of the side effect, and explore the mechanism underlying the role of EPO-TAT in a transient focal cerebral ischemia model in rats.

Methods: Transient focal ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Rats were treated, respectively, with following regimens: saline, 1000 U/kg EPO, 5000 U/kg EPO, 1000 U/kg EPO-TAT, 1000 U/kg EPOTAT+5 µl of 10 mM LY294002 (or/plus 5 µl of 5 mM PD98059).

View Article and Find Full Text PDF

Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms.

View Article and Find Full Text PDF

Mononuclear phagocytes are a population of multi-phenotypic cells and have dual roles in brain destruction/reconstruction. The phenotype-specific roles of microglia/macrophages in traumatic brain injury (TBI) are, however, poorly characterized. In the present study, TBI was induced in mice by a controlled cortical impact (CCI) and animals were killed at 1 to 14 days post injury.

View Article and Find Full Text PDF

Dietary supplementation with omega-3 (ω-3) fatty acids is a safe, economical mean of preventive medicine that has shown protection against several neurologic disorders. The present study tested the hypothesis that this method is protective against controlled cortical impact (CCI). Indeed, mice fed with ω-3 polyunsaturated fatty acid (PUFA)-enriched diet for 2 months exhibited attenuated short and long-term behavioral deficits due to CCI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of motor and cognitive deficits in young adults for which there is no effective therapy. The present study characterizes the protective effect of a new histone deacetylase inhibitor, Scriptaid (Sigma-Aldrich Corporation, St. Louis, MO), against injury from controlled cortical impact (CCI).

View Article and Find Full Text PDF

The enhanced neurotoxicity of the Parkinson's disease-associated LRRK2 mutant, G2019S, than its wild-type counter-part has recently been reported. Overexpression of LRRK2 (G2019S) in cultured neural cells results in caspase-3-dependent apoptosis via a yet undefined signaling pathway. Elucidation of the mechanism underlying LRRK2 (G2019S) neurotoxicity may offer new insights into the pathogenesis of Parkinson's disease.

View Article and Find Full Text PDF

Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling.

View Article and Find Full Text PDF

Due to limited penetration of the BBB, many therapeutic agents in clinical use require higher doses in order to reach effective concentrations in brain. In some instances, these high doses elicit severe side effects. In the case of erythropoietin (EPO), an established neuroprotectant against ischemic brain injury, its low BBB permeability requires such a high therapeutic dose that it can induce dangerous complications such as polycythmia and secondary stroke.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a recently identified gene that, when mutated at specific locations, results in the onset of parkinsonian symptoms with clinical features indistinguishable from idiopathic Parkinson's disease. Based on structural and domain analysis, LRRK2 is predicted to function as a stress-responsive protein scaffold mediating the regulation of mitogen activating protein kinase (MAPK) pathways. Consistent with this notion, our results supported the notion that expression of wild-type LRRK2 but not Y1699C or G2019S mutants enhanced the tolerance of HEK293 and SH-SY5Y cells towards H(2)O(2)-induced oxidative stress.

View Article and Find Full Text PDF

To study whether and how cells adapt to chronic cellular stress, we exposed PC12 cells to the proteasome inhibitor MG132 (0.1 microM) for 2 weeks and longer. This treatment reduced chymotrypsin-like proteasome activity by 47% and was associated with protection against both 6-hydroxydopamine (6-OHDA; 100 microM) and higher dose MG132 (40 microM).

View Article and Find Full Text PDF

Loss of mitochondrial membrane integrity and release of apoptogenic factors are a key step in the signaling cascade leading to neuronal cell death in various neurological disorders, including ischemic injury. Emerging evidence has suggested that the intramitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and promotes caspase-independent cell death induced by glutamate toxicity, oxidative stress, hypoxia, or ischemia. However, the mechanism by which AIF is released from mitochondria after neuronal injury is not fully understood.

View Article and Find Full Text PDF

Exposure to sublethal stress can trigger endogenous protection against subsequent, higher levels of stress. We tested for this preconditioning phenomenon in a model of Parkinson's disease by applying 6-hydroxydopamine to the dopaminergic MN9D cell line. Exposure to sublethal concentrations of 6-hydroxydopamine (5-10 microM) protected against the toxic effects of a subsequent exposure to a higher concentration (50 microM), as measured by the Hoechst assay for nuclear viability.

View Article and Find Full Text PDF

This study attempted to elucidate the signaling mechanism underlying dopaminergic cell death in the MPP+ model for Parkinson's disease. In neuronal-differentiated PC12 cells, through the regulation by activated JNK and c-jun, BimEL expression was markedly increased in response to MPP+ treatment, which led to the cell degeneration. In lieu of Smac translocation as seen in other paradigms, up-regulation of BimEL effected an increase in calpain I activity that, in turn, mediated AIF release from the mitochondria.

View Article and Find Full Text PDF

This study showed that primary dopaminergic neurons or the dopaminergic cell line MN9D, when exposed to 15 min of the parkinsonian toxin 6-hydroxydopamine (6-OHDA) in the range of 30-100 microM, underwent delayed degeneration and exhibited hallmarks of apoptosis. These results, along with the absence of any increase in lactate dehydrogenase (LDH) release from the degenerated cells, imply that apoptosis was the dominant mode of cell death. Moreover, a distinct elevation in the measured cellular activities of caspase-9 and -3 but not of caspase-8 points to the caspase-9/caspase-3 cascade as the predominant apoptotic pathway in the degeneration of dopaminergic neurons and MN9D cells.

View Article and Find Full Text PDF

After a severe episode of ischemia, traumatic brain injury (TBI) or epilepsy, it is typical to find necrotic cell death within the injury core. In addition, a substantial number of neurons in regions surrounding the injury core have been observed to die via the programmed cell death (PCD) pathways due to secondary effects derived from the various types of insults. Apart from the cell loss in the injury core, cell death in regions surrounding the injury core may also contribute to significant losses in neurological functions.

View Article and Find Full Text PDF

Our results presented here suggest that cortical neurons degenerate via two caspase-mediated apoptotic pathways when challenged with 0.5 microM rotenone. Although these two pathways can be attributed to the loss of mitochondrial integrity, the triggers for these pathways are likely due to two separate subsequent events (the release of cytochrome c and the emergence of mitochondrial permeability transition [MPT]).

View Article and Find Full Text PDF