Hypothesis: Cyclodextrin-assisted photodegradation of toluene was investigated in water in the presence of a photo-irradiated commercial titanium dioxide photocatalyst. It was expected that cyclodextrins could form water-soluble supramolecular host/guest complexes with the toluene and thus promote the approach of the pollutant on the TiO2 surface and enhance the phototocatalytic oxidation efficiency.
Experiments: Photodegradation kinetics of toluene were investigated under UV-C and near-visible light radiation in aqueous suspensions of TiO2.
A series of mesoporous titania photocatalysts with tailorable structural and textural characteristics was prepared in aqueous phase via a colloidal self-assembly approach using various cyclodextrins (CDs) as structure-directing agents. The photocatalysts and the structure-directing agents were characterized at different stages of the synthesis by combining X-ray diffraction, N2-adsorption, field emission scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, dynamic light scattering, and surface tension measurements. The results demonstrate that the cyclic macromolecules efficiently direct the self-assembly of titania colloids, resulting in a fine-tuning of the crystal phase composition, crystallite size, surface area, particle morphology, pore volume, and pore size.
View Article and Find Full Text PDF