Publications by authors named "Anthony L Endres"

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σ), and σ represents an average value for the depth range investigated with a specific coil separation and orientation.

View Article and Find Full Text PDF

Subsurface leakage of natural gas from petroleum wells can impact freshwater aquifers. Accurate prediction of gas migration in the subsurface will depend on knowledge of permeability, porosity, and flow system conditions. A series of two-dimensional numerical multi-phase flow simulations (CFbio) were conducted to investigate the role of multi-phase parameters (relative permeability and air entry pressure), flow system conditions (intrinsic permeability, anisotropy, and groundwater velocity), and geometric properties (layer thickness and layer lateral continuity) on the flow of gas-phase methane emanating from two variable-rate point sources in an unconfined sandy aquifer.

View Article and Find Full Text PDF

Fugitive methane (CH) leakage associated with conventional and unconventional petroleum development (e.g., shale gas) may pose significant risks to shallow groundwater.

View Article and Find Full Text PDF

Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content.

View Article and Find Full Text PDF

Both particle shape and surface phenomena significantly affect the effective complex dielectric properties of colloidal systems. The treatment of particle shape has generally relied on the extrapolation from the solution of the spherical case proposed by O'Konski [J. Chem.

View Article and Find Full Text PDF

An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L).

View Article and Find Full Text PDF