Publications by authors named "Anthony Knap"

In May 2021, the M/V container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions.

View Article and Find Full Text PDF

The TRopical Oil Pollution Investigations in Coastal Systems (TROPICS) experiment, conducted on the Caribbean coast of Panama, has become one of the most comprehensive field experiments examining the long-term impacts of oil and dispersed oil exposures in nearshore tropical marine environments. From the initial experiment through more than three decades of study and data collection visits, the intertidal and subtidal communities have exhibited significantly different impact and recovery regimes, depending on whether the sites were exposed to crude oil only or crude oil treated with a chemical dispersant. This review provides a synopsis of the original experiment and a cumulative summary of the results and observations, illustrating the environmental and ecosystem trade-offs of chemical dispersant use in mangrove, seagrass, and coral reef environments.

View Article and Find Full Text PDF

The potential impacts of sub-surface hydrocarbon plumes to deep-water column micronekton are an important consideration in a more complete understanding of ecosystem effects resulting from deep-sea oil spills. However, evaluating toxicity in these organisms presents multiple challenges, and the use of a shallow-water proxy species allows comparison and validation of experimental results. This study thus examined the suitability of the peppermint shrimp, , as an experimental proxy for ecologically important deep-sea zooplankton/micronekton in hydrocarbon toxicity assays.

View Article and Find Full Text PDF

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained.

View Article and Find Full Text PDF

Background: Given the time and monetary costs associated with traditional analytical chemistry, there remains a need to rapidly characterize environmental samples for priority analysis, especially within disaster research response (DR2). As PAHs are both ubiquitous and occur as complex mixtures at many National Priority List sites, these compounds are of interest for post-disaster exposures.

Objective: This study tests the field application of the KinExA Inline Biosensor in Galveston Bay and the Houston Ship Channel (GB/HSC) and in the Elizabeth River, characterizing the PAH profiles of these region's soils and sediments.

View Article and Find Full Text PDF

Background: Hurricane Harvey made landfall along the Texas Gulf Coast as a Category 4 hurricane on August 25, 2017, producing unprecedented precipitation that devastated coastal areas. Catastrophic flooding in the City of Houston inundated industrial and residential properties resulting in the displacement and transfer of soil, sediment, and debris and heightening existing environmental justice (EJ) concerns.

Objectives: The primary aim of this study was to evaluate the presence, distribution, and potential human health implications of polycyclic aromatic hydrocarbons (PAHs) in a residential neighborhood of Houston, Texas following a major hurricane.

View Article and Find Full Text PDF

The attraction and colonization of vertebrate remains by carrion-associated arthropods are processes largely governed by olfaction. As remains decompose, they emit a bouquet of volatile organic compounds (VOCs), which in part originate from endogenous and exogenous microbes surrounding the carcass or from the carcass itself. The composition and concentration of VOCs are influenced by the presence and abundance of microbial species and arthropods.

View Article and Find Full Text PDF

Hurricane Harvey led to a broad redistribution of sediment throughout Galveston Bay and the Houston Ship Channel (GB/HSC), but the resulting changes in chemical contaminant distributions have yet to be characterized. To address this question, we collected and analyzed post-Harvey sediment for concentrations of the EPA 16 Priority Pollutant polycyclic aromatic hydrocarbon (PAHs), determining the extent to which the spatial distribution and sourcing of contaminants may have changed in contrast to historical surface sediment data (<5 cm) from the National Oceanic Atmospheric Administration (NOAA) available for the years 1996-2011. We found a small, but detectable increase from pre- to post-Harvey in PAH concentrations, with PAH diagnostic sourcing indicating combustion origins.

View Article and Find Full Text PDF

Heavy metal exposure in humans and animals commonly occurs through the consumption of metal-contaminated drinking water and food. Although many studies have focused on the remediation of metals by purification of water using sorbents, limited therapeutic sorbent strategies have been developed to minimize human and animal exposures to contaminated water and food. To address this need, a medical grade activated carbon (MAC) and an acid processed montmorillonite clay (APM) were characterized for their ability to bind heavy metals and mixtures.

View Article and Find Full Text PDF

Hurricane Harvey (Harvey), a slow-moving storm, struck the Texas coast as a category 4 hurricane. Over the course of 53 days, the floodwaters of Harvey delivered 14 × 10 m of freshwater to Galveston Bay. This resulted in record flooding of Houston bayous and waterways, all of which drained into the San Jacinto Estuary (SJE,) with its main tributaries being Buffalo Bayou and the San Jacinto River.

View Article and Find Full Text PDF

Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels.

View Article and Find Full Text PDF

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C to n-C), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3.

View Article and Find Full Text PDF

Concerns on the timing and processes associated with petroleum degradation were raised after the use of Corexit during the Deepwater Horizon oil spill. There is a lack of understanding of the removal of oil associated with flocculate materials to the sediment. Mesocosm studies employing coastal and open-ocean seawater from the Gulf of Mexico were undertaken to examine changes in oil concentration and composition with time.

View Article and Find Full Text PDF

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets.

View Article and Find Full Text PDF

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5).

View Article and Find Full Text PDF

Chemical characterization of the presence of oil in environmental samples are performed using methods of varying complexity. Extraction of samples with an organic solvent and analysis by fluorescence spectrometry has been shown to be a rapid and effective screening technique for petroleum in the environment. During experiments, rapid analysis of oil by fluorescence provides the opportunity for researchers to modify the experimental conditions in real time.

View Article and Find Full Text PDF

The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings.

View Article and Find Full Text PDF

Satellite chlorophyll (chl ) observations have repeatedly noted summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N-fixing diatom-cyanobacteria associations of the diatom genera Brightwell and Ehrenberg. Their nitrogen fixing endosymbiont, J.

View Article and Find Full Text PDF

During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g.

View Article and Find Full Text PDF

Unlabelled: Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed.

View Article and Find Full Text PDF

Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms.

View Article and Find Full Text PDF

There are few studies that have evaluated hydrocarbon toxicity to vertically migrating deep-sea micronekton. Crustaceans were collected alive using a 9-m Tucker trawl with a thermally insulated cod end and returned to the laboratory in 10 °C seawater. Toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to Americamysis bahia, Janicella spinacauda, Systellaspis debilis, Sergestes sp.

View Article and Find Full Text PDF

Background: Evaluation of interindividual variability is a challenging step in risk assessment. For most environmental pollutants, including perchloroethylene (PERC), experimental data are lacking, resulting in default assumptions being used to account for variability in toxicokinetics and toxicodynamics.

Objective: We quantitatively examined the relationship between PERC toxicokinetics and toxicodynamics at the population level to test whether individuals with increased oxidative metabolism are be more sensitive to hepatotoxicity following PERC exposure.

View Article and Find Full Text PDF

We chronicle the extensive influence over the past forty years of Professor Edward D. Goldberg and his call in 1975 for a "Mussel Watch" or bivalve sentinel organism approach to assess geographic status and temporal trends of several chemicals of environmental concern in the coastal ocean. Examples of local, regional, national and international programs are discussed briefly as are examples of interesting useful findings and limitations to the Mussel Watch concept.

View Article and Find Full Text PDF