Publications by authors named "Anthony K Ho"

The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice.

View Article and Find Full Text PDF

Histone modifications have been shown to play an important role in regulating gene expression. In this study, we investigated the impact of histone modifications on the adrenergic-regulated transcription of type 2 deiodinase (Dio2), a CREB-target gene in the rat pinealocyte. Treatment of pinealocytes with inhibitors of aurora C, a histone kinase, resulted in an inhibitory effect on the adrenergic-stimulated histone H3 Ser10 phosphorylation and Dio2 transcription.

View Article and Find Full Text PDF

The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine-N-acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A.

View Article and Find Full Text PDF

Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function.

View Article and Find Full Text PDF

Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland.

View Article and Find Full Text PDF

The Cyberknife is an image-guided radiosurgical system. It uses a compact X-band 6-MV linear accelerator mounted on a robotic arm to deliver radiosurgical doses. While routine quality assurance (QA) is essential for any radiosurgery system, QA plays an even more vital role for the Cyberknife system, due to the complexity of the system and the wide range of applications.

View Article and Find Full Text PDF

We recently reported a diurnal and norepinephrine (NE) -induced expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the rat pineal gland and postulated that this MKP-1 expression might impact adrenergic-regulated arylalkylamine-N-acetyltransferase (AA-NAT) activity via modulation of MAPKs. In this study, we investigated the effect of depletion of MKP-1 expression by using doxorubicin, a topoisomerase inhibitor that suppresses the expression of MKP-1 in other cell types and small interfering RNA targeted against Mkp1 in NE-stimulated pinealocytes. We found that both treatments were effective in inhibiting NE induction of MKP-1 expression.

View Article and Find Full Text PDF

Objective: New technology has enabled the increasing use of radiosurgery to ablate spinal lesions. The first generation of the CyberKnife (Accuray, Inc., Sunnyvale, CA) image-guided radiosurgery system required implanted radiopaque markers (fiducials) to localize spinal targets.

View Article and Find Full Text PDF

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) regulates the daily rhythm in the production of melatonin and is therefore an attractive target for pharmacologic modulation of the synthesis of this hormone. Previously prepared bisubstrate analogs show potent inhibition of AANAT but have unfavorable pharmacokinetic properties due to the presence of phosphate groups which prevents transfer across the plasma membrane. Here, we examine a bis-pivaloyloxymethylene (POM)-tryptamine-phosphopantetheine prodrug (2) and its biotransformations in vitro by homogenates and pineal cells.

View Article and Find Full Text PDF

The pineal gland is a photoneuroendocrine transducer that influences circadian and circannual dynamics of many physiological functions via the daily rhythm in melatonin production and release. Melatonin synthesis is stimulated at night by a photoneural system through which pineal adenylate cyclase is adrenergically activated, resulting in an elevation of cAMP. cAMP enhances melatonin synthesis through actions on several elements of the biosynthetic pathway.

View Article and Find Full Text PDF

In this study, we investigated the effect of proteasomal inhibition on the induction of arylalkylamine-N-acetyltransferase (AA-NAT) enzyme in cultured rat pinealocytes, using two proteasome inhibitors, MG132 and clastolactacystin beta-lactone (c-lact). Addition of c-lact or MG132 3 h after norepinephrine (NE) stimulation produced a significant increase in AA-NAT protein level and enzyme activity. However, when the proteasome inhibitors were added before or together with NE, significant reductions of the NE-induced aa-nat mRNA, protein, and enzyme activity were observed.

View Article and Find Full Text PDF

The norepinephrine-driven increase in mitogen-activated protein kinase (MAPK) activity is part of the mechanism that regulates arylalkylamine N-acetyltransferase (AA-NAT) activity in the rat pineal gland. We now report a marked nocturnal increase in the expression of a MAPK phosphatase, MAP kinase phosphatase-1 (MKP-1), that was blocked by maintaining animals in constant light or treatment with propranolol. MKP-1 expression was regulated by norepinephrine acting through both alpha- and beta-adrenergic receptors.

View Article and Find Full Text PDF

In this study, we investigated the mechanisms through which norepinephrine (NE) regulates MAPK phosphatase-1 (MKP-1) expression in rat pinealocytes. Stimulation with NE (a mixed alpha- and beta-adrenergic agonist) caused a rapid increase in MKP-1 mRNA and protein that peaked around 1 h post stimulation, and the response was sustained for at least 4 h. Selective activation of beta-adrenergic receptors with isoproterenol for 1 h caused a similar increase in MKP-1 mRNA and protein as observed with NE, but at 3 h, the isoproterenol response was much lower relative to NE.

View Article and Find Full Text PDF