Publications by authors named "Anthony J Winder"

Acute ischemic stroke (AIS) remains a global health challenge, leading to long-term functional disabilities without timely intervention. Spatio-temporal (4D) Computed Tomography Perfusion (CTP) imaging is crucial for diagnosing and treating AIS due to its ability to rapidly assess the ischemic core and penumbra. Although traditionally used to assess acute tissue status in clinical settings, 4D CTP has also been explored in research for predicting stroke tissue outcomes.

View Article and Find Full Text PDF

Objective: Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of subgroup performance disparities. However, since not all sources of bias in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess their impacts. In this article, we introduce an analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models.

View Article and Find Full Text PDF

Purpose: Artificial intelligence (AI) has emerged as a transformative force in medical research and is garnering increased attention in the public consciousness. This represents a critical time period in which medical researchers, healthcare providers, insurers, regulatory agencies, and patients are all developing and shaping their beliefs and policies regarding the use of AI in the healthcare sector. The successful deployment of AI will require support from all these groups.

View Article and Find Full Text PDF

Predicting follow-up lesions from baseline CT perfusion (CTP) datasets in acute ischemic stroke patients is important for clinical decision making. Deep convolutional networks (DCNs) are assumed to be the current state-of-the-art for this task. However, many DCN classifiers have not been validated against the methods currently used in research (random decision forests, RDF) and clinical routine (Tmax thresholding).

View Article and Find Full Text PDF

Decisions regarding acute stroke treatment rely heavily on imaging, but interpretation can be difficult for physicians. Machine learning methods can assist clinicians by providing tissue outcome predictions for different treatment approaches based on acute multi-parametric imaging. To produce such clinically viable machine learning models, factors such as classifier choice, data normalization, and data balancing must be considered.

View Article and Find Full Text PDF