Publications by authors named "Anthony J Saviola"

The extracellular matrix (ECM) is a complex network of proteins that provides structural support and biochemical cues to cells within tissues. Characterizing ECM composition is critical for understanding this tissue component's roles in development, homeostasis, and disease processes. This protocol describes an integrated pipeline for profiling both cellular and ECM proteins across varied tissue types using mass spectrometry-based proteomics.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) gene encodes dystrophin, a large multidomain protein. Its nonfunctionality leads to dystrophinopathies like DMD and Becker muscular dystrophy, for which no cure is yet available. A few therapies targeted towards specific mutations can extend the lifespan of patients, although with limited efficacy and high costs, emphasizing the need for more general treatments.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH.

View Article and Find Full Text PDF

The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment.

View Article and Find Full Text PDF

Recently developed ultrasound contrast agents are a promising tool for imaging and drug delivery in tumors. To better understand their unusual kinetics, we implemented a novel pixel clustering analysis, which provides unique information by accounting for spatial heterogeneity. By combining ultrasound results with proteomics of the imaged tumors, we show that this analysis is highly predictive of protein expression and that specific types of nanobubble time-intensity curve are associated with upregulation of different metabolic pathways.

View Article and Find Full Text PDF
Article Synopsis
  • The EphB4-ephrinB2 system is important in cancer spreading (metastasis) for many types of cancer, including head and neck cancer.
  • Reducing EphB4 in cancer cells can actually help them spread more because it increases certain immune cells that protect the tumor.
  • Blocking ephrinB2 in blood vessels while treating with radiation can help boost the immune response against the tumor and reduce spreading, suggesting that targeting this system could help in fighting the cancer.
View Article and Find Full Text PDF

Unlabelled: Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear.

View Article and Find Full Text PDF

Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression.

View Article and Find Full Text PDF

The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex.

View Article and Find Full Text PDF

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in venom responsible for causing local dermonecrosis.

View Article and Find Full Text PDF

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide.

View Article and Find Full Text PDF

Aims: Following myocardial infarction (MI), the heart repairs itself via a fibrotic repair response. The degree of fibrosis is determined by the balance between deposition of extracellular matrix (ECM) by activated fibroblasts and breakdown of nascent scar tissue by proteases that are secreted predominantly by inflammatory cells. Excessive proteolytic activity and matrix turnover has been observed in human heart failure, and protease inhibitors in the injured heart regulate matrix breakdown.

View Article and Find Full Text PDF

Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets.

View Article and Find Full Text PDF

Purpose: Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy.

View Article and Find Full Text PDF

The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex.

View Article and Find Full Text PDF

With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level.

View Article and Find Full Text PDF

In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus represent the first example of full skin autotomy in mammals. has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches.

View Article and Find Full Text PDF

Rationale: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo.

Objective: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury.

View Article and Find Full Text PDF

Here we introduce hyperthermoacidic archaeal proteases (HTA-Proteases©) isolated from organisms that thrive in nearly boiling acidic volcanic springs and investigate their use for bottom-up proteomic experiments. We find that HTA-Proteases have novel cleavage specificities, show no autolysis, function in dilute formic acid, and store at ambient temperature for years. HTA-Proteases function optimally at 70-90 °C and pH of 2-4 with rapid digestion kinetics.

View Article and Find Full Text PDF

The implementation of cancer immunotherapies has seen limited clinical success in head and neck squamous cell carcinoma (HNSCC). Interleukin-2 (IL-2), which modulates the survival and functionality of lymphocytes, is an attractive target for new immunotherapies but one that is limited by presence of regulatory T cells (Tregs) expressing the high-affinity IL-2Rα. The bispecific immunocytokine PD1-IL2v preferentially delivers IL-2 signaling through IL-2Rβγ on PD-1-expressing cells.

View Article and Find Full Text PDF

Pelvic floor disorders, including pelvic organ prolapse and urinary and fecal incontinence, affect millions of women globally and represent a major public health concern. Pelvic floor muscle (PFM) dysfunction has been identified as one of the leading risk factors for the development of these morbid conditions. Childbirth, specifically vaginal delivery, has been recognized as the most important potentially modifiable risk factor for PFM injury; however, the precise mechanisms of PFM dysfunction after parturition remain elusive.

View Article and Find Full Text PDF

Studying the consequences of hybridization between closely related species with divergent traits can reveal patterns of evolution that shape and maintain extreme trophic adaptations. Snake venoms are an excellent model system for examining the evolutionary and ecological patterns that underlie highly selected polymorphic traits. Here we investigate hybrid venom phenotypes that result from natural introgression between two rattlesnake species that express highly divergent venom phenotypes: Crotalus o.

View Article and Find Full Text PDF

The ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells.

View Article and Find Full Text PDF

Background: Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention.

View Article and Find Full Text PDF