Introduction: The DDX21 RNA helicase has been shown to be a nucleolar and nuclear protein involved in ribosome RNA processing and AP-1 transcription. DDX21 is highly expressed in colon cancer, lymphomas, and some breast cancers, but little is known about how DDX21 might promote tumorigenesis.
Methods: Immunohistochemistry was performed on a breast cancer tissue array of 187 patients.
The ARF and p53 tumor suppressors are thought to act in a linear pathway to prevent cellular transformation in response to various oncogenic signals. Here, we show that loss of p53 leads to an increase in ARF protein levels, which function to limit the proliferation and tumorigenicity of p53-deficient cells by inhibiting an IFN-β-STAT1-ISG15 signaling axis. Human triple-negative breast cancer (TNBC) tumor samples with coinactivation of p53 and ARF exhibit high expression of both STAT1 and ISG15, and TNBC cell lines are sensitive to STAT1 depletion.
View Article and Find Full Text PDFDHX33 is a pivotal DEAH-box RNA helicase in the multistep process of RNA polymerase I-directed transcription of the ribosomal DNA locus. We explored the regulation of DHX33 expression by Ras(V12) and ARF to determine DHX33's role in sensing these opposing signals to regulate ribosome biogenesis. In wild-type primary fibroblasts, Ras(V12) infection induced a transient increase in DHX33 protein level, as well as an rRNA transcriptional rate that was eventually suppressed by a delayed activation of the ARF/p53 pathway.
View Article and Find Full Text PDFThe ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor.
View Article and Find Full Text PDFThe p19ARF tumor suppressor limits ribosome biogenesis and responds to hyperproliferative signals to activate the p53 checkpoint response. Although its activation of p53 has been well characterized, the role of ARF in restraining nucleolar ribosome production is poorly understood. Here we report the use of a mass spectroscopic analysis to identify protein changes within the nucleoli of Arf-deficient mouse cells.
View Article and Find Full Text PDFThe nucleolus is the center of ribosome synthesis, with the nucleophosmin (NPM) and p19(ARF) proteins antagonizing one another to either promote or inhibit growth. However, basal NPM and ARF proteins form nucleolar complexes whose functions remain unknown. Nucleoli from Arf(-/)(-) cells displayed increased nucleolar area, suggesting that basal ARF might regulate key nucleolar functions.
View Article and Find Full Text PDFOne of the outstanding fundamental questions in cancer cell biology concerns how cells coordinate cellular growth (or macromolecular synthesis) with cell cycle progression and mitosis. Intuitively, rapidly dividing cells must have some control over these processes; otherwise cells would continue to shrink in volume with every passing cycle, similar to the cytoreductive divisions seen in the very early stages of embryogenesis. The problem is easily solved in unicellular organisms, such as yeast, as their growth rates are entirely dependent on nutrient availability.
View Article and Find Full Text PDFBackground: Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation.
View Article and Find Full Text PDFAndrogen receptor (AR) belongs to the steroid receptor superfamily that regulates gene expression in a ligand-dependent fashion. AR is localized to the cytoplasm in the absence of androgen and translocates into the nuclei to activate gene expression in the presence of ligand. Regulation of AR nuclear import and export represents an essential step in androgen action.
View Article and Find Full Text PDF