Studying the relationship between catalyst conformational dynamics and selectivity in an asymmetric reaction is a challenge. In this study, cyclic peptides were computationally designed to stabilize different ground state conformations of a highly effective, flexible tetrapeptide catalyst for the atroposelective bromination of -aryl quinazolinones. Through a combination of computational and experimental techniques, we have determined that dynamic movement of the lead catalyst plays a crucial role in achieving high enantioselectivity in the reaction of study.
View Article and Find Full Text PDFLow molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest.
View Article and Find Full Text PDFWe report a catalytic, light-driven method for the intramolecular hydroetherification of unactivated alkenols to furnish cyclic ether products. These reactions occur under visible-light irradiation in the presence of an Ir -based photoredox catalyst, a Brønsted base catalyst, and a hydrogen-atom transfer (HAT) co-catalyst. Reactive alkoxy radicals are proposed as key intermediates, generated by direct homolytic activation of alcohol O-H bonds through a proton-coupled electron-transfer mechanism.
View Article and Find Full Text PDFConfigurationally stable, atropisomeric motifs are an important structural element in a number of molecules, including chiral ligands, catalysts, and molecular devices. Thus, understanding features that stabilize chiral axes is of fundamental interest throughout the chemical sciences. The following details the high rotational barriers about the Ar-C(O) bond of tropone amides, which significantly exceed those of analogous benzamides.
View Article and Find Full Text PDFIt is widely accepted that structural rigidity is required to achieve high levels of asymmetric induction in catalytic, enantioselective reactions. This fundamental design principle often does not apply to highly selective catalytic peptides that often exhibit conformational heterogeneity. As a result, these complex systems are particularly challenging to study both experimentally and computationally.
View Article and Find Full Text PDFNature's catalytic machinery has provided endless inspiration for chemists. While the enzymatic ideal has yet to be fully realized, the field has made tremendous strides toward synthetic, small-molecule catalysts for a wide array of transformations, often drawing upon biological concepts in their design. One strategy that has been particularly influenced by enzymology is peptide catalysis, wherein oligopeptides are implemented as chiral catalysts in synthetically relevant reactions.
View Article and Find Full Text PDFWe report the development of a method to parameterize and predict the performance of structurally flexible β-turn-containing peptide catalysts, using the atroposelective bromination of 3-arylquinazolin-4(3H)-ones as a case study. The multivariate correlations obtained for tetrapeptides of two β-turn types, type I' pre-helical and type II' β-hairpin, indicate that although one conformer may be associated with a more dominant contribution to the observed enantioselectivity, it is possible that multiple conformers contribute to a complex transition state ensemble.
View Article and Find Full Text PDFDiarylmethylamido bis(phenols) have been subjected to peptide-catalyzed, enantioselective bromination reactions. Desymmetrization of compounds in this class has been achieved such that enantioenriched products may be isolated with up to 97:3 er. Mechanistically, the observed enantioselectivity was shown to be primarily a function of differential functionalization of enantiotopic arenes, although additional studies unveiled a contribution from secondary kinetic resolution of the product (to afford the symmetrical dibromide) under the reaction conditions.
View Article and Find Full Text PDFX-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states.
View Article and Find Full Text PDFWe report the development of a tertiary amine-containing β-turn peptide that catalyzes the atroposelective bromination of pharmaceutically relevant 3-arylquinazolin-4(3H)-ones (quinazolinones) with high levels of enantioinduction over a broad substrate scope. The structure of the free catalyst and the peptide-substrate complex were explored using X-ray crystallography and 2D-NOESY experiments. Quinazolinone rotational barriers about the chiral anilide axis were also studied using density functional theory calculations and are discussed in light of the high enantioselectivities observed.
View Article and Find Full Text PDFOne of the most well-recognized stereogenic elements in a chiral molecule is an sp(3)-hybridized carbon atom that is connected to four different substituents. Axes of chirality can also exist about bonds with hindered barriers of rotation; molecules containing such axes are known as atropisomers. Understanding the dynamics of these systems can be useful, for example, in the design of single-atropisomer drugs or molecular switches and motors.
View Article and Find Full Text PDFWe report the development and optimization of a tetrapeptide that catalyzes the methanolytic dynamic kinetic resolution of oxazol-5(4H)-ones (azlactones) with high levels of enantioinduction. Oxazolones possessing benzylic-type substituents were found to perform better than others, providing methyl ester products in 88:12 to 98:2 er. The mechanism of this peptide-catalyzed process was investigated through truncation studies and competition experiments.
View Article and Find Full Text PDF