To reveal whether increased Ca2+ permeability of glutamate AMPA channels triggered by the transgene for GluR-B(N) induces decline in motor functions and neurodegeneration in the spinal cord, we evaluated growth, motor coordination, and spinal reflexes in transgenic GluR-B(N) and wild-type (wt) mice. To reveal whether the transgenic GluR-B(N) expression aggravates the course of motoneuron disease in SOD1 mice, we mated heterozygous GluR-B(N) and SOD1 [C57BL6Ico-TgN(hSOD1-G93A)1Gur] mice to generate double-transgenic progeny. The phenotypic sequelae in mice carrying mutations were evaluated by monitoring growth, motor coordination, and survival.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating disorder of the central nervous system in middle and old age that leads to progressive loss of spinal motoneurons. Transgenic mice overexpressing mutated human Cu(2+)/Zn(2+) superoxide dismutase 1 (SOD1) reproduce clinical features of the familial form of ALS. However, changes in SOD1 activity do not correlate with severity of motor decline in sporadic cases, indicating that targets unrelated to superoxide metabolism contribute to the pathogenesis of the disease.
View Article and Find Full Text PDFExperimental autoimmune encephalomyelitis reproduces in rodents the features of multiple sclerosis, an immune-mediated, disabling disorder of the human nervous system. No adequate therapy is available for multiple sclerosis, despite anti-inflammatory, immunosuppressive, and immunomodulatory measures. Increasingly glutamate is implicated in the pathogenesis of neurodegenerative diseases.
View Article and Find Full Text PDF