Publications by authors named "Anthony J F d'Apice"

Background: ABO-incompatible (ABOi) organ transplantation is performed owing to unremitting donor shortages. Defining mechanisms of antibody-mediated rejection, accommodation, and tolerance of ABOi grafts is limited by lack of a suitable animal model. We report generation and characterization of a murine model to enable study of immunobiology in the setting of ABOi transplantation.

View Article and Find Full Text PDF

Background: Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies.

View Article and Find Full Text PDF

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution.

View Article and Find Full Text PDF

Background: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells.

View Article and Find Full Text PDF

Background: Promising developments in porcine islet xenotransplantation could resolve the donor pancreas shortage for patients with type 1 diabetes. Using α1,3-galactosyltransferase gene knockout (GTKO) donor pigs with multiple transgenes should extend xenoislet survival via reducing complement activation, thrombus formation, and the requirement for exogenous immune suppression. Studying the xenoantibody response to GTKO/hCD55/hCD59/hHT islets in the pig-to-baboon model, and comparing it with previously analyzed responses, would allow the development of inhibitory reagents capable of targeting conserved idiotypic regions.

View Article and Find Full Text PDF

Background: B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance.

View Article and Find Full Text PDF

Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways.

View Article and Find Full Text PDF

Background: Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti-αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to determine if producing anti-human CD2 antibodies via adenovirus in pig islet cell clusters could protect transplanted grafts from immune rejection in a humanized mouse model.
  • - Three types of engineered antibodies (dilimomab, diliximab, and dilizumab) were tested for their effectiveness in binding human T cells and inhibiting immune responses, revealing that dilimomab and diliximab were effective while dilizumab was not.
  • - Results indicated that localized production of diliximab in transplanted grafts could deplete human T cells at the site without affecting the overall immune system, suggesting a potential new approach to reduce reliance on systemic immunosuppression. *
View Article and Find Full Text PDF

Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model.

View Article and Find Full Text PDF

Unlabelled: Ischemia-reperfusion injury (IRI) is a major limiting event for successful liver transplantation, and CD4+ T cells and invariant natural killer T (iNKT) cells have been implicated in promoting IRI. We hypothesized that hepatic overexpression of CD39, an ectonucleotidase with antiinflammatory functions, will protect liver grafts after prolonged cold ischemia. CD39-transgenic (CD39tg) and wildtype (WT) mouse livers were transplanted into WT recipients after 18 hours cold storage and pathological analysis was performed 6 hours after transplantation.

View Article and Find Full Text PDF

Modulation of purinergic signaling, which is critical for vascular homeostasis and the response to vascular injury, is regulated by hydrolysis of proinflammatory ATP and/or ADP by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) to AMP, which then is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. We report here that compared with littermate controls (wild type), transgenic mice expressing human ENTPDase-1 were resistant to the formation of an occlusive thrombus after FeCl(3)-induced carotid artery injury. Treatment of mice with the nonhydrolyzable ADP analog, adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S], negated the protection from thrombosis, consistent with a role for ADP in platelet recruitment and thrombus formation.

View Article and Find Full Text PDF

Unlabelled: CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD-1) rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. While expression of human CD39 in a murine model of myocardial ischemia/reperfusion (I/R) injury confers cardiac protection, the translational therapeutic potential of these findings requires further testing in a large animal model. To determine if transgenic expression of CD39 reduces infarct size in a swine model of myocardial ischemia/reperfusion injury, transgenic pigs expressing human CD39 (hCD39) were generated via somatic cell nuclear transfer and characterized.

View Article and Find Full Text PDF

Modulation of purinergic signaling is critical to myocardial homeostasis. Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) which converts the proinflammatory molecules ATP or ADP to AMP is a key regulator of purinergic modulation. However, the salutary effects of transgenic over expression of ENTPD-1 on myocardial response to ischemic injury have not been tested to date.

View Article and Find Full Text PDF

Background: Expression of multiple graft-protective proteins targeted to different locations (i.e., intracellular, cell surface, and secreted) has become an increasingly important goal in xenotransplantation.

View Article and Find Full Text PDF

Purpose Of Review: Deletion of the α1,3-galactosyltransferase (GalT) gene in pigs has removed a major xenoantigen but has not eliminated the problem of dysregulated coagulation and vascular injury. Rejecting GalT knockout organ xenografts almost invariably show evidence of thrombosis and platelet sequestration, and primate recipients frequently develop consumptive coagulopathy. This review examines recent findings that illuminate potential mechanisms of this current barrier to successful xenotransplantation.

View Article and Find Full Text PDF

Xenotransplantation of solid organs will only ever become a clinical reality with genetic modification of the pig, which is now widely accepted as the most likely donor species for humans. The understanding of the barriers to xenotransplantation has required advances in genetic technologies to resolve these problems. Hyperacute rejection has been overcome by overexpression of complement regulatory proteins or targeted disruption of the enzyme associated with the major carbohydrate xenoantigen.

View Article and Find Full Text PDF

Background: Adenosine agonists are protective in numerous models of ischemia-reperfusion injury (IRI). Pericellular adenosine is generated by the hydrolysis of extracellular adenosine triphosphate and adenosine diphosphate by the ectonucleotidase CD39 and the subsequent hydrolysis of adenosine monophosphate (AMP) by the ectonucleotidase CD73. CD39 activity is protective in kidney IRI, whereas the role of CD73 remains unclear.

View Article and Find Full Text PDF

Background: Immunosuppression focused at or near the graft site would reduce the need for systemic immunosuppression thus educing fewer side effects. We investigated whether locally produced CTLA4Ig, mediated by adenovirus (Adv) transduction of mouse islets, would protect allografts and whether such immunosuppression would remain localized.

Methods: Adv-CTLA4Ig- or Adv-control-transduced islets were grafted under the kidney capsule of fully allogeneic diabetic mice.

View Article and Find Full Text PDF

Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes.

View Article and Find Full Text PDF

Purpose Of Review: Vascular injury is a complex process that is central to the rejection of solid-organ xenografts in the preclinical pig-to-primate model of xenotransplantation. This review summarizes recent work that provides insights into the mechanisms of vascular injury in GalT KO pig xenografts.

Recent Findings: Several groups have reported further evidence for the importance of preexisting and elicited non-GalT antibodies, which are capable of fixing complement and activating graft endothelial cells.

View Article and Find Full Text PDF

Using heterologous prime-boost (DNA immunization followed by immunization with transfected cells), we have generated depleting mouse anti-baboon CD2 monoclonal antibodies (mAb). These anti-CD2 mAb recognized a diverse range of primate CD2 from New World monkeys and Old World monkeys to humans and have potent immunosuppressive activity for human allo-MLR responses and anti-tetanus-toxoid recall responses. There was no upregulation of activation markers or release of cytokines when the mAb were incubated with human peripheral blood mononuclear cells.

View Article and Find Full Text PDF