Background: Maturational failure of dialysis arteriovenous fistulas (AVFs) not uncommonly occurs and is of considerable and timely importance. Our prior studies demonstrate that senescence, a phenotypic process that promotes vascular and other diseases, occurs in the murine AVF. In the present study, we examined whether senescence also occurs in the rat AVF model and the effect of compounds that inhibit or accelerate senescence.
View Article and Find Full Text PDFKey Points: In heme protein–mediated AKI (HP-AKI), a senescence phenotype promptly occurs, and increased expression of p16 contributes to HP-AKI. Renal p16 expression is induced by hemoglobin, myoglobin, and heme and in renal epithelial cells exposed to heme . Impairing the binding or degradation of heme by hemopexin deficiency or heme oxygenase-1 deficiency, respectively, further upregulates p16.
View Article and Find Full Text PDFBackground: Mitochondrial injury occurs in and underlies acute kidney injury (AKI) caused by ischemia-reperfusion and other forms of renal injury. However, to date, a comprehensive analysis of this issue has not been undertaken in heme protein-induced AKI (HP-AKI). We examined key aspects of mitochondrial function, expression of proteins relevant to mitochondrial quality control, and mitochondrial ultrastructure in HP-AKI, along with responses to heme in renal proximal tubule epithelial cells.
View Article and Find Full Text PDFHeme proteins, the stuff of life, represent an ingenious biologic strategy that capitalizes on the biochemical versatility of heme, and yet is one that avoids the inherent risks to cellular vitality posed by unfettered and promiscuously reactive heme. Heme proteins, however, may be a double-edged sword because they can damage the kidney in certain settings. Although such injury is often viewed mainly within the context of rhabdomyolysis and the nephrotoxicity of myoglobin, an increasing literature now attests to the fact that involvement of heme proteins in renal injury ranges well beyond the confines of this single disease (and its analog, hemolysis); indeed, through the release of the defining heme motif, destabilization of intracellular heme proteins may be a common pathway for acute kidney injury, in general, and irrespective of the underlying insult.
View Article and Find Full Text PDFDiscovering new nephroprotectants may provide therapeutic strategies in AKI.This study provides the first evidence that KLF11, a member of the Krüppel-like factor (KLF) family of proteins, protects against AKI.In the absence of KLF11, exaggerated induction of endothelin-1 and IL-6 occurs after ischemic renal injury and may contribute to worse AKI.
View Article and Find Full Text PDFBackground: The actions of angiotensin-converting enzyme 2 (ACE2) oppose those of the renin-angiotensin-aldosterone system. ACE2 may be a cytoprotectant in some tissues. This study examined ACE2 expression in models of AKI.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2022
Background: Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI.
View Article and Find Full Text PDFRestoration of kidney tubular epithelium following sublethal injury sequentially involves partial epithelial-mesenchymal transition (pEMT), proliferation, and further redifferentiation into specialized tubule epithelial cells (TECs). Because the immunosuppressant cyclosporine-A produces pEMT in TECs and inhibits the peptidyl-prolyl isomerase (PPIase) activity of cyclophilin (Cyp) proteins, we hypothesized that cyclophilins could regulate TEC phenotype. Here we demonstrate that in cultured TECs, CypA silencing triggers loss of epithelial features and enhances transforming growth factor β (TGFβ)-induced EMT in association with upregulation of epithelial repressors Slug and Snail.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2020
In the murine venous thrombosis model induced by ligation of the inferior vena cava (IVCL), genetic deficiency of heme oxygenase-1 (HO-1) increases clot size. This study examined whether induction of HO-1 or administration of its products reduces thrombosis. Venous HO-1 upregulation by gene delivery reduced clot size, as did products of HO activity, biliverdin, and carbon monoxide.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2019
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI.
View Article and Find Full Text PDFThere is no therapy that promotes maturation and functionality of a dialysis arteriovenous fistula (AVF). The search for such therapies largely relies on evaluation of vascular responses and putative therapies in experimental AVFs. We studied an AVF in mice with chronic kidney disease (CKD).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2018
Destabilized heme proteins release heme, and free heme is toxic. Heme is now recognized as an agonist for the Toll-like receptor-4 (TLR4) receptor. This study examined whether the TLR4 receptor mediates the nephrotoxicity of heme, specifically, the effects of heme on renal blood flow and inflammatory responses.
View Article and Find Full Text PDFThe arteriovenous fistula (AVF) is the preferred hemodialysis vascular access, but it is complicated by high failure rates and attendant morbidity. This study provides the first description of a murine AVF model that recapitulates two salient features of hemodialysis AVFs, namely, anastomosis of end-vein to side-artery to create the AVF and the presence of chronic kidney disease (CKD). CKD reduced AVF blood flow, observed as early as 3 days after AVF creation, and increased neointimal hyperplasia, venous wall thickness, thrombus formation, and vasculopathic gene expression in the AVF.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2015
The present study examined the heme oxygenase (HO) system in an in vivo murine model of pathological shear stress induced by partial carotid artery ligation. In this model, along with upregulation of vasculopathic genes, HO-1 is induced in the endothelium and adventitia, whereas HO-2 is mainly upregulated in the endothelium. Within minutes of ligation, NF-κB, a transcription factor that upregulates vasculopathic genes and HO-1, is activated.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2013
Heme oxygenase-2 (HO-2), the constitutive isoform of the heme-degrading enzyme heme oxygenase, may serve as an anti-inflammatory vasorelaxant, in part, by generating carbon monoxide. Arteriovenous fistulas (AVFs) are employed as hemodialysis vascular accesses because they provide an accessible, high-blood-flow vascular segment. We examined the role of vascular expression of HO-2 in AVF function.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
February 2013
Age increases the risk for ischemic acute kidney injury (AKI). We questioned whether a similar age-dependent injury occurs following exposure to hemoglobin, a known nephrotoxin. Old mice (~16 mo old), but not young mice (~6 mo old), when administered hemoglobin, exhibited marked elevation in blood urea nitrogen (BUN) and serum creatinine, and acute tubular necrosis with prominent tubular cast formation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2012
Vascular access dysfunction causes morbidity in hemodialysis patients. This study examined the generation and pathobiological significance of superoxide anion in a rat femoral arteriovenous fistula (AVF). One week after AVF creation, there was increased production of superoxide anion accompanied by decreased total superoxide dismutase (SOD) and Cu/Zn SOD activities and induction of the redox-sensitive gene heme oxygenase-1.
View Article and Find Full Text PDFUnderlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2011
The study of hemodynamic alterations following the creation of an arteriovenous fistula (AVF) is relevant to vascular adaptive responses and hemodialysis access dysfunction. This study examined such alterations in a murine AVF created by anastomosing the carotid artery to the jugular vein. AVF blood flow was markedly increased due to reduced AVF vascular resistance.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2011
TGF-β1 contributes to chronic kidney disease, at least in part, via Smad3. TGF-β1 is induced in the kidney following acute ischemia, and there is increasing evidence that TGF-β1 may protect against acute kidney injury. As there is a paucity of information regarding the functional significance of Smad3 in acute kidney injury, the present study explored this issue in a murine model of ischemic acute kidney injury in Smad3(+/+) and Smad3(-/-) mice.
View Article and Find Full Text PDFVascular access dysfunction compromises the care of patients on chronic hemodialysis. Elucidating the mechanisms of such dysfunction and devising strategies that may interrupt neointimal hyperplasia and relevant pathogenetic pathways are essential. Here, we show that, in the venous segment of a murine model of an arteriovenous fistula, monocyte chemoattractant protein-1 (MCP-1) mRNA and protein increase, accompanied by increased activity of the transcription factors NF-κB and AP-1.
View Article and Find Full Text PDFNeointimal hyperplasia contributes to failure of hemodialysis arteriovenous fistulas (AVFs). Increased expression of matrix metalloproteinase (MMP)-9 occurs in AVFs, and MMP-9 is implicated in neointimal hyperplasia and vascular injury. Recent studies demonstrate that MMP-9, by degrading N-cadherin, leads to increased expression of β-catenin and β-catenin-dependent proliferation of smooth muscle cells.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2010
ANG II causes renal injury through hemodynamic and other effects, and pressor doses of ANG II induce heme oxygenase-1 (HO-1) as a protective response. The present studies examined the hemodynamic effects of more clinically relevant, lower doses of ANG II and the role of HO activity in influencing these effects. Under euvolemic conditions, ANG II increased arterial pressure and renal vascular resistance.
View Article and Find Full Text PDFVascular access dysfunction contributes to the mortality of patients undergoing chronic hemodialysis. The present study analyzed the changes that evolve in a femoral arteriovenous fistula in the rat. The venous segment of this model exhibited, at 1 week, activation of pro-inflammatory transcription factors and up-regulation of pro-inflammatory, proliferative, procoagulant, and profibrotic genes; and at 4 weeks, the venous segment displayed neointimal hyperplasia, smooth muscle proliferation, and thrombus formation.
View Article and Find Full Text PDFDespite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells.
View Article and Find Full Text PDF