The Pacific cold tongue annual cycle in sea surface temperature is presumed to be driven by Earth's axial tilt (tilt effect), and thus its phasing should be fixed relative to the calendar. However, its phase and amplitude change dramatically and consistently under various configurations of orbital precession in several Earth System models. Here, we show that the cold tongue possesses another annual cycle driven by the variation in Earth-Sun distance (distance effect) from orbital eccentricity.
View Article and Find Full Text PDFMuch of the global annual mean temperature change over Quaternary glacial cycles can be attributed to slow ice sheet and greenhouse gas feedbacks, but analysis of the short-term response to orbital forcings has the potential to reveal key relationships in the climate system. In particular, obliquity and precession both produce highly seasonal temperature responses at high latitudes. Here, idealized single-forcing model experiments are used to quantify Earth's response to obliquity, precession, CO, and ice sheets, and a linear reconstruction methodology is used to compare these responses to long proxy records around the globe.
View Article and Find Full Text PDFA phone survey was conducted in New Jersey in 2013 four months after the second of two major devastating tropical storms (Sandy in 2012 and Irene in 2011). The objective was to estimate public support for restricting land uses in flood zones, requiring housing to be built to resist storm waters, and otherwise increasing mitigation and resilience. Respondents who supported these mitigation and resilience policies disproportionately were concerned about global climate change, trusted climate scientists and the federal government, and were willing to contribute to a redevelopment program through taxes, bonds, and fees.
View Article and Find Full Text PDFClement et al. (Reports, 24 July 2009, p. 460) provided observational evidence for systematic relationships between variations in marine low cloudiness and other climatic variables and found that most current-generation climate models were deficient in reproducing such relationships.
View Article and Find Full Text PDFSeveral indices of large-scale patterns of surface temperature variation were used to investigate climate change in North America over the 20th century. The observed variability of these indices was simulated well by a number of climate models. Comparison of index trends in observations and model simulations shows that North American temperature changes from 1950 to 1999 were unlikely to be due to natural climate variation alone.
View Article and Find Full Text PDF