Coupling light from a point source to a propagating mode is an important problem in nano-photonics and is essential for many applications in quantum optics. Circular "bullseye" cavities, consisting of concentric rings of alternating refractive index, are a promising technology that can achieve near-unity coupling into a first lens. Here we design a bullseye structure suitable for enhancing the emission from dye molecules, 2D materials and nano-diamonds positioned on the surface of these cavities.
View Article and Find Full Text PDFSpin defects in foils of hexagonal boron nitride are an attractive platform for magnetic field imaging, since the probe can be placed in close proximity to the target. However, as a III-V material the electron spin coherence is limited by the nuclear spin environment, with spin echo coherence times of ∽100 ns at room temperature accessible magnetic fields. We use a strong continuous microwave drive with a modulation in order to stabilize a Rabi oscillation, extending the coherence time up to ∽ 4μs, which is close to the 10 μs electron spin lifetime in our sample.
View Article and Find Full Text PDFThe realization of topological edge states (TESs) in photonic systems has provided unprecedented opportunities for manipulating light in novel manners. The Su-Schrieffer-Heeger (SSH) model has recently gained significant attention and has been exploited in a wide range of photonic platforms to create TESs. We develop a photonic topological insulator strategy based on SSH photonic crystal nanobeam cavities.
View Article and Find Full Text PDFA device that is able to produce single photons is a fundamental building block for a number of quantum technologies. Significant progress has been made in engineering quantum emission in the solid state, for instance, using semiconductor quantum dots as well as defect sites in bulk and two-dimensional materials. Here we report the discovery of a room-temperature quantum emitter embedded deep within the band gap of aluminum nitride.
View Article and Find Full Text PDFThe generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal.
View Article and Find Full Text PDFEpitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile.
View Article and Find Full Text PDFSingle spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field.
View Article and Find Full Text PDFSecurity considerations are an often overlooked and underfunded aspect of the development, delivery, and evaluation of e-mental health interventions although they are crucial to the overall success of any eHealth project. The credibility and reliability of eHealth scientific research and the service delivery of eHealth interventions rely on a high standard of data security. This paper describes some of the key methodological, technical, and procedural issues that need to be considered to ensure that eHealth research and intervention delivery meet adequate security standards.
View Article and Find Full Text PDFQuantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission.
View Article and Find Full Text PDFBackground: There is a need to identify interventions that increase help seeking for depression among young adults.
Objective: The aim was to evaluate a brief depression information intervention employing health e-cards (personalized emails containing links to health information presented on a Web page).
Methods: A randomized controlled trial was carried out with 348 19- to 24-year-olds drawn from the community.
We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations.
View Article and Find Full Text PDF