A molecular dyad, PY-P-PER, comprising a proline octamer sandwiched between pyrene and perylene terminals has been synthesized in order to address the dynamics of electronic energy transfer (EET) along the oligo-proline chain. A simple pyrene-based control compound equipped with a bis-proline attachment serves as a reference for spectroscopic studies. The N-H NMR signal at the terminal pyrene allows distinction between and amides and, although the crystal structure for the control has the conformation, temperature-dependent NMR studies provide clear evidence for / isomerisation in D-DMSO.
View Article and Find Full Text PDFTo explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a ,,,-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC.
View Article and Find Full Text PDFAromatic amides can be used to construct light-harvesting materials with valuable optical properties. The amide bond is formed using well-known coupling agents in near quantitative yield, as illustrated here through the synthesis of two boron dipyrromethene derivatives bearing an amide linkage. The primary concern with acyl amides is rotation around the C-N bond, leading to cis and trans isomers.
View Article and Find Full Text PDFThe target mono-BF complex is weakly emissive in fluid solution because radiationless decay of the excited-singlet state is promoted through an intramolecular N⋅⋅⋅H-N hydrogen bond. The lack of mirror symmetry for this compound is attributed to vibronic effects, as reported previously for the bis-BF complex (BOPHY). Red-shifted fluorescence is observed from single crystals, the emission quantum yield approaching 30 % with a fluorescence lifetime of 2 ns.
View Article and Find Full Text PDFA boron dipyrromethene (BODIPY) derivative bearing a -proline residue at the -position crystallizes in the form of platelets with strong (i.e., Φ = 0.
View Article and Find Full Text PDFLight-induced blinking, an inherent feature of many forms of super-resolution microscopy, has been linked to transient reduction of the fluorescent cyanine dye used as an imaging agent. There is, however, only scant literature information related to one-electron reduced cyanine dyes, especially in an aqueous environment. Here, we examine a small series of cyanine dyes, possessing disparate π-conjugation lengths, under selective reducing or oxidizing conditions.
View Article and Find Full Text PDFA covalently linked bichromophore, embracing 6,13-bis(triisopropylsilylethinyl)pentacene (TIPS-pentacene) terminals bridged by a rigid fluorene spacer, generates a relatively high yield (i.e., 65 ± 6%) of the spin-correlated, triplet biexciton upon illumination in toluene.
View Article and Find Full Text PDFA new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift.
View Article and Find Full Text PDFA symmetrical molecular array has been synthesized comprising a central zinc(II) 5,10,15,20-tetraphenylporphyrin with identical boron dipyrromethene (BODIPY) units appended at each of the meso sites. Excitation of any subunit causes a cascade of electronic energy-transfer steps, ultimately leading to the BODIPY triplet-excited state in high yield. Coincidentally, the triplet energy levels of the zinc(II) porphyrin and BODIPY appendage are closely balanced such that an equilibrium is established at both 77 K and room temperature.
View Article and Find Full Text PDFA small series of boranil complexes has been studied by fluorescence spectroscopy. Weakly fluorescent in most organic solvents at room temperature, the target compounds display bright emission in the crystalline phase. X-ray diffraction patterns obtained for single crystals indicate a distorted tetrahedral geometry around the O-B-N center with the boron atom being displaced from the plane of the heterobicyclic ring.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2019
Indigo, an emblematic violet dye used for thousands of years to colour fabric, is resistant to fading on exposure to sunlight. Prior work has indicated that indigo is reactive towards both hydroperoxyl radicals and superoxide anions in solution. In order to promote photobleaching of indigo, we have utilised a BOPHY-based (BOPHY = aryl fused symmetrical pyrrole-BF complex) chromophore known to form both superoxide ions and a stable alkyl hydroperoxide under illumination in aerated solution.
View Article and Find Full Text PDFThe syntheses and crystal structures of sterically crowded mono- and bichromophoric BODIPY-based dyes are reported. The "monomeric" compound is weakly fluorescent in the liquid phase due to fast internal conversion associated with rotation of aryl rings at the boron atom. The side-by-side "dimer" exhibits weak excitonic coupling between the dipyrrin units and is much more emissive in fluid solution.
View Article and Find Full Text PDFCyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging.
View Article and Find Full Text PDFA boron dipyrromethene (BODIPY) derivative has been synthesized whereby a phenoxyl ring attached at the 3-position is bound through the oxygen atom to the boron center. This compound is structurally distorted, with the molecular surface being curved, and undergoes further geometrical perturbation at the excited singlet state level. Fluorescence is readily observed in solution at ambient temperature, with the quantum yield rising with increasing viscosity of the surrounding solvent.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2019
The BOPHY structural scaffold provides opportunities for the synthesis of innumerable derivatives with linear geometries and well-controlled π-conjugation pathways. The simpler BOPHY chromophores are highly fluorescent but exhibit poor mirror symmetry between absorption and fluorescence spectra at ambient temperature. In particular, the absorption (and excitation) spectra are broad and appear as two overlapping bands of comparable intensity.
View Article and Find Full Text PDFExposing TIPS-pentacene in deaerated benzene to ionizing radiation generates a mixture of singlet- and triplet-excited states of the solute. The singlet undergoes radiative decay without spin conversion whereas the triplet undergoes radiationless decay on the microsecond time scale. The concentration of each species was established by dosimetry.
View Article and Find Full Text PDFTwo Chromophore-Quencher Conjugates (CQCs) have been synthesized by covalent attachment of the anti-oxidant dibutylated-hydroxytoluene (BHT) to a pyrrole-BF2 chromophore (BOPHY) in an effort to protect the latter against photofading. In fluid solution, light-induced intramolecular charge transfer is favoured in polar solvents and helps to inhibit photo-bleaching of the chromophore. The rate of photo-fading, which scales with the number of BHT residues, is zero-order in polar solvents but shows a linear dependence on the number of absorbed photons.
View Article and Find Full Text PDFA pair of complementary molecular dyads have been synthesized around a 1,2-diaminocyclohexyl spacer that itself undergoes ring inversion. Despite these conformational exchange processes, the donor and acceptor occupy quite restricted spatial regions, and they are not interchangeable. The donor and acceptor pair comprise disparate boron dipyrromethene dyes selected to display favorable electronic energy transfer (EET).
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2018
Erythrosine, a popular food dye, undergoes fast O-sensitive bleaching in water when subjected to visible light illumination. In dilute solution, erythrosine undergoes photobleaching via first-order kinetics, where the rate of bleaching depends critically on the rate of photon absorption and on the concentration of dissolved oxygen. Kinetic studies indicate that this inherent bleaching is augmented by self-catalysis at higher concentrations of erythrosine and on long exposure times.
View Article and Find Full Text PDFPalladium catalysed coupling of the 2-iodoBODIPY 3 with a range of anilines and a primary alkylamine succeeds in generating the corresponding 2-aminoBODIPYs. These 2-aminoBODIPY derivatives are non-emissive and quantum chemical calculations and electrochemistry are consistent with charge transfer from the amine substituent. Attenuation of this charge transfer pathway by conversion of the 1,2-phenylenediamine derivative 9 into the corresponding benzimidazolone 10 restores the fluorescence and has been used as the basis for a fluorescence sensor for phosgene.
View Article and Find Full Text PDFTin(IV) catalysis allows isolation of a boron dipyrromethene derivative bearing a solitary strap around the boron center. The conditions favor internal cyclization without contamination by side products and provide high yields of product in good purity. A phenolate-based strap imposes chirality and causes geometrical distortion of the dipyrrin.
View Article and Find Full Text PDF