Publications by authors named "Anthony H Stonehouse"

Background And Objectives: Traumatic brain injury (TBI) is frequently characterized by chronic motor deficits. Therefore, this clinical trial assessed whether intracranial implantation of allogeneic modified mesenchymal stromal (SB623) cells can improve chronic motor deficits after TBI.

Methods: Post hoc analysis of the double-blind, randomized, prospective, surgical sham-controlled, phase 2, STEMTRA clinical trial (June 2016 and March 2019) with 48 weeks of follow-up was conducted.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a global health problem, for which there are no approved therapies. Advances in acute clinical care have improved post-TBI survival, yet many patients are left with chronic TBI-related disabilities (i.e.

View Article and Find Full Text PDF

Objective: To determine whether chronic motor deficits secondary to traumatic brain injury (TBI) can be improved by implantation of allogeneic modified bone marrow-derived mesenchymal stromal/stem cells (SB623).

Methods: This 6-month interim analysis of the 1-year double-blind, randomized, surgical sham-controlled, phase 2 Stem Cell Therapy for Traumatic Brain Injury (STEMTRA) trial (NCT02416492) evaluated safety and efficacy of the stereotactic intracranial implantation of SB623 in patients with stable chronic motor deficits secondary to TBI. Patients in this multicenter trial (n = 63) underwent randomization in a 1:1:1:1 ratio to 2.

View Article and Find Full Text PDF

Incretin-based therapies have established a foothold in the diabetes armamentarium through the introduction of oral dipeptidyl peptidase-4 inhibitors and the injectable class, the glucagon-like peptide-1 receptor agonists. In 2009, the American Diabetes Association and European Association for the Study of Diabetes authored a revised consensus algorithm for the initiation and adjustment of therapy in Type 2 diabetes (T2D). The revised algorithm accounts for the entry of incretin-based therapies into common clinical practice, especially where control of body weight and hypoglycemia are concerns.

View Article and Find Full Text PDF

Background: Exenatide is a peptide incretin mimetic that has glucoregulatory actions associated with weight reduction. Previous reports demonstrated acute increases in blood pressure after systemic or intracerebroventricular administration of exenatide or glucagon like peptide 1 (GLP 1) in rats. However, there are limited studies testing the chronic effects of these peptides on arterial pressure and no reports showing the effects of these peptides to reverse hypertension in the context of the metabolic syndrome.

View Article and Find Full Text PDF

Epidemiological studies indicate that caffeine consumption reduces the risk of Parkinson's disease (PD) in men, and antagonists of the adenosine 2A receptor ameliorate the motor symptoms of PD. These findings motivated us to identify proteins whose expression is regulated by caffeine in a sexually dimorphic manner. Using mass spectroscopy, we found that Cox7c, a nuclear-encoded subunit of the mitochondrial enzyme cytochrome oxidase, is up-regulated in the striatum of male but not female mice after receiving a single dose of caffeine.

View Article and Find Full Text PDF

Type 2 diabetes is characterised by insulin resistance and progressive beta-cell dysfunction (which leads to hyperglycaemia), the risk of progressive worsening of glycaemic control and an increased risk of both macrovascular and microvascular complications. Existing treatment strategies target deficient insulin secretion and insulin resistance, but do not generally address the underlying progressive beta-cell dysfunction that is common to Type 2 diabetes. Traditionally, Type 2 diabetes is first treated with medical nutrition therapy (reduced food intake and increased physical activity), followed by stepwise addition of oral antidiabetes therapies and, ultimately, exogenous insulin, as required.

View Article and Find Full Text PDF

In a previous study, we showed that the psychoactive drug caffeine alters the expression of the dopamine 2 receptor (D2R) gene in vitro and in vivo. Here, we report that acute administration of antipsychotic and anti-parkinsonian drugs also regulate D2R gene expression in PC12 cells and in the mouse striatum. Treatment of PC12 cells with the atypical antipsychotic and specific 5-HT antagonist clozapine (60 microM) reduced D2R/luciferase reporter expression by 46% after 24 h.

View Article and Find Full Text PDF

The psychoactive drug caffeine influences neuronal physiology; however, it is unknown whether it can dynamically alter the expression of genes that influence neurotransmission. Here, we report that caffeine stimulates transcription of the dopamine 2 receptor (D2R) gene in PC-12 cells and primary striatal cultures and increases D2R protein expression in the striatum. Physiological doses of caffeine and the specific adenosine 2A receptor antagonist 8-(3-chlorostyryl) caffeine both increased the activity of a D2R/luciferase reporter construct within 24 h, and simultaneous treatment with 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680), a specific adenosine 2A receptor agonist, eliminated this effect.

View Article and Find Full Text PDF

The inwardly rectifying potassium ion channel Kir2.2 has recently been demonstrated to have nuclear and plasma membrane subcellular localization. Nuclear expression of Kir2.

View Article and Find Full Text PDF