Publications by authors named "Anthony H Rogers"

Introduction: Extracellular material (ECM) surrounding Enterococcus faecalis may play a role in increasing resistance to environmental stresses. Our aim was to determine ECM levels in response to subminimal inhibitory concentrations of sodium hypochlorite (sub-MIC/NaOCl) or anaerobic growth and determine the impact on biofilm development.

Methods: From 37 E.

View Article and Find Full Text PDF

Enterococcus faecalis is often involved in the aetiology of apical periodontitis after endodontic treatment. This project aimed to establish, on dentine in vitro, a multi-species biofilm containing E. faecalis, and to determine if the organism had an increased resistance to sodium hypochlorite compared with an axenic biofilm.

View Article and Find Full Text PDF

Fusobacterium nucleatum is a Gram-negative anaerobic organism that plays a central role in the development of periodontal diseases. The progression of periodontitis is associated with a rise in pH of the gingival sulcus which promotes the growth and expression of virulence factors by periodontopathic bacteria. We have previously reported that the expression of specific cytoplasmic proteins is altered by a shift in growth pH.

View Article and Find Full Text PDF

Fusobacterium nucleatum is a Gram-negative anaerobic organism considered to play an important role in the progression of periodontal disease and is commonly found in clinical infections of other body sites. Apart from its metabolic versatility, its cell-surface properties enable it to attach to epithelial cells, collagen, gingival epithelial cells and other bacterial genera, but not with other Fusobacteria. The development of periodontitis is associated with a rise in pH in the gingival sulcus to around 8.

View Article and Find Full Text PDF

Fusobacterium nucleatum is a saccharolytic Gram-negative anaerobic organism believed to play an important role in the microbial succession associated with the development of periodontal disease. Its genome contains niche-specific genes shared with the other inhabitants of dental plaque, which may help to explain its ability to survive and grow in the changing environmental conditions experienced in the gingival sulcus during the transition from health to disease. The pH of the gingival sulcus increases during the development of periodontitis and this is thought to occur by the metabolism of nutrients supplied by gingival crevicular fluid.

View Article and Find Full Text PDF

Porphyromonas gingivalis is an anaerobic microorganism that inhabits the oral cavity, where oxidative stress represents a constant challenge. A putative transcriptional regulator associated with oxidative stress, an oxyR homologue, is known from the P. gingivalis W83 genome sequence.

View Article and Find Full Text PDF

Fusobacterium nucleatum is a Gram-negative anaerobe that has been implicated in the aetiology of several diseases including periodontal diseases. Like other fusobacteria, it derives energy from the fermentation of amino acids and, in resting (non-growing) cells, this enables the organism to transport glucose and synthesise intracellular polyglucose (IP). The continued availability and fermentation of amino acids inhibits IP breakdown.

View Article and Find Full Text PDF