The heart and aortic arch arteries in amniotes form a double circulation, taking oxygenated blood from the heart to the body and deoxygenated blood to the lungs. These major vessels are formed in embryonic development from a series of paired and symmetrical arteries that undergo a complex remodelling process to form the asymmetric arch arteries in the adult. These embryonic arteries form in the pharyngeal arches, which are symmetrical bulges on the lateral surface of the head.
View Article and Find Full Text PDFControversies continue as to how many pharyngeal arches, with their contained arteries, are to be found in the developing human. Resolving these controversies is of significance to paediatric cardiologists since many investigating abnormalities of the extrapericardial arterial pathways interpret their findings on the basis of persistence of a fifth set of such arteries within an overall complement of six sets. The evidence supporting such an interpretation is open to question.
View Article and Find Full Text PDFThe pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos. In humans, and other amniotes, there are five pharyngeal arches and traditionally these have been labelled from cranial to caudal-1, 2, 3, 4 and 6. This numbering is odd-there is no '5'.
View Article and Find Full Text PDFThe pharyngeal arches are a series of bulges on the lateral surface of the embryonic head. They are a defining feature of the most conserved, the phylotypic, stage of vertebrate development. In many vertebrate clades, the segmental arrangement of the pharyngeal arches is translated into the iterative anatomy of the gill arches.
View Article and Find Full Text PDFThe mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis.
View Article and Find Full Text PDFThe dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding.
View Article and Find Full Text PDFBackground: Zinc is one of the vital micronutrients required through various developmental stages in animals. Zinc transporter-1 (ZnT1; Slc30a1) is essential in vertebrates for nutritional zinc uptake and cellular zinc extrusion. Knockout of ZnT1 is lethal in vertebrates and there are therefore few functional studies of this protein in vivo.
View Article and Find Full Text PDFThe pharyngeal arches are a prominent and significant feature of vertebrate embryos. These are visible as a series of bulges on the lateral surface of the embryonic head. In humans, and other amniotes, there are five pharyngeal arches numbered 1, 2, 3, 4 and 6; note the missing '5'.
View Article and Find Full Text PDFOlfactory ensheathing cells (OECs) are a specialized class of glia, wrapping around olfactory sensory axons that target the olfactory bulb (OB) and cross the peripheral nervous system/central nervous system boundary during development and continue to do so post-natally. OEC subpopulations perform distinct subtype-specific functions dependent on their maturity status. Disrupted OEC development is thought to be associated with abnormal OB morphogenesis, leading to anosmia, a defining characteristic of Kallmann syndrome.
View Article and Find Full Text PDFBackground: The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos, and it is within these segments that components of the later anatomy are laid down. In most vertebrates, the post-otic pharyngeal arches will form the branchial apparatus, while in amniotes these segments are believed to generate the larynx. It has been unclear how the development of these segments has been altered with the emergence of the amniotes.
View Article and Find Full Text PDFBackground: The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw closing muscles. These cells differentiate close to the two key signalling centres that influence the dorsal midbrain, the isthmus, which mediates its effects via FGF and WNT signalling and the roof plate, which is a major source of BMP signalling as well as WNT signalling.
Methods: In this study, we have set out to analyse the importance of FGF, WNT and BMP signalling for the development of the MTN.
A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal-a phenomenon called . In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms.
View Article and Find Full Text PDFThe hypothalamic GnRH neurons are a small group of cells that regulate the reproductive axis. These neurons are specified within the olfactory placode, delaminate from this structure, and then migrate to enter the forebrain before populating the hypothalamus. We have used microarray technology to analyze the transcriptome of the olfactory placode at a number of key time points for GnRH ontogeny using the chick embryo.
View Article and Find Full Text PDFBackground: Pharyngeal segmentation is a defining feature of vertebrate embryos and is apparent as a series of bulges found on the lateral surface of the embryonic head, the pharyngeal arches. The ancestral condition for gnathostomes is to have seven pharyngeal segments: jaw, hyoid, and five posterior branchial arches. However, within the sarcopterygians, the pharyngeal region has undergone extensive remodelling that resulted in a reduction in the number of pharyngeal segments, such that amniotes have only five pharyngeal arches.
View Article and Find Full Text PDFA key event in the formation of the pharyngeal arches is the outpocketing of the endodermal pharyngeal pouches and the establishment of contact with the overlying ectoderm. However, relatively little is known about how the endoderm and ectoderm relate to each other at these points of contact and the extent to which this differs between the pouches. We have therefore detailed the interactions between the pharyngeal pouches and ectoderm in the chick embryo.
View Article and Find Full Text PDFBackground: Vertebrates possess two populations of sensory neurons located within the central nervous system: Rohon-Beard (RB) and mesencephalic trigeminal nucleus (MTN) neurons. RB neurons are transient spinal cord neurons whilst MTN neurons are the proprioceptive cells that innervate the jaw muscles. It has been suggested that MTN and RB neurons share similarities and may have a common developmental program, but it is unclear how similar or different their development is.
View Article and Find Full Text PDFSegmentation is a feature of the body plans of a number of diverse animal groupings, including the annelids, arthropods and chordates. However, it has been unclear whether or not these different manifestations of segmentation are independently derived or have a common origin. Central to this issue is whether or not there are common developmental mechanisms that establish segmentation and the evolutionary origins of these processes.
View Article and Find Full Text PDFStudies in model organisms constitute the basis of our understanding of the principal molecular mechanisms of cell fate determination in the developing central nervous system. Considering the emergent applications in stem cell-based regenerative medicine, it is important to demonstrate conservation of subtype specific gene expression programs in human as compared to model vertebrates. We have examined the expression patterns of key regulatory genes in neural progenitor cells and their neuronal and glial descendants in the developing human spinal cord, hindbrain, and midbrain, and compared these with developing mouse and chicken embryos.
View Article and Find Full Text PDFPigment Cell Melanoma Res
February 2013