Publications by authors named "Anthony Gotter"

Article Synopsis
  • The study investigates the safety, tolerability, and pharmacokinetics of BIIB078, an investigational treatment targeting the genetic cause of amyotrophic lateral sclerosis (ALS) linked to the C9orf72 gene mutation.
  • The trial involved 106 participants with C9orf72-associated ALS, who were randomly assigned to receive varying doses of BIIB078 or a placebo over a treatment period of three to six months.
  • Results showed that all participants experienced at least one adverse event, mostly mild or moderate, indicating that while BIIB078 did pose some risks, it did not lead to a high rate of treatment discontinuation.
View Article and Find Full Text PDF
Article Synopsis
  • Modification of a metabotropic glutamate receptor 2 negative allosteric modulator (mGluR NAM) resulted in new analogues with improved binding affinity and suitable properties for PET tracers.
  • The new compounds displayed excellent lipophilicity and favorable physicochemical characteristics, making them promising candidates for imaging studies.
  • C-MK-8056 was synthesized and showed the required affinity, selectivity, and properties to function effectively as a PET tracer for mGluR.
View Article and Find Full Text PDF

Orexin receptors 42 are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [109]. Currently the only orexin receptor ligands in clinical use are suvorexant and lemborexant, which are used as hypnotics. Orexin receptor crystal structures have been solved [134, 133, 54, 117, 46].

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new series of positive allosteric modulators (PAMs) targeting muscarinic acetylcholine receptor 4, focusing on 2,3-disubstituted and 2,3,6-trisubstituted compounds.
  • Through iterative libraries, they identified effective substituents that enhanced the potency of these compounds, leading to a selective and brain-penetrant candidate, compound 24.
  • Preclinical tests show that compound 24 can reduce amphetamine-induced hyperactivity in rats and mice, with fewer side effects compared to a nonselective agonist, indicating its potential as a safer treatment option for psychosis.
View Article and Find Full Text PDF

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression.

View Article and Find Full Text PDF

Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors.

View Article and Find Full Text PDF

Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects.

View Article and Find Full Text PDF

Orexins are hypothalamic neuropeptides that have a documented role in mediating the acute stress response. However, their role in habituation to repeated stress, and the role of orexin receptors (OXR and OXR) in the stress response, has yet to be defined. Orexin neuronal activation and levels in the cerebrospinal fluid (CSF) were found to be stimulated with acute restraint, but were significantly reduced by day five of repeated restraint.

View Article and Find Full Text PDF

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OXR subtype and culminating in the discovery of 23, a highly potent, OXR-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OXR antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.

View Article and Find Full Text PDF

Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal.

View Article and Find Full Text PDF

While a correlation between blockade of the orexin 2 receptor (OXR) with either a dual orexin receptor antagonist (DORA) or a selective orexin 2 receptor antagonist (2-SORA) and a decrease of wakefulness is well established, less is known about selective blockade of the orexin 1 receptor (OXR). Therefore, a highly selective orexin 1 antagonist (1-SORA) with suitable properties to allow in vivo interrogation of OXR specific pharmacology in preclinical species remains an attractive target. Herein, we describe the discovery of an optimized 1-SORA series in the piperidine ether class.

View Article and Find Full Text PDF

Orexin signaling, known to modulate arousal and vigilance, is also involved in nociception as orexin neurons project to regions of the brain and spinal cord involved in pain processing, and the administration of orexin peptides can alter pain response in a wide range of preclinical models. Pharmacological treatment with the potent, selective and structurally distinct dual orexin receptor antagonists (ORAs) DORA-12 and DORA-2 significantly reduced pain responses during both phases I and II of the mouse formalin pain model and significantly reversed hyperalgesia in the rat complete Freund's adjuvant pain model, respectively. Significant antinociceptive effects of DORA-12 in the formalin model were also observed in orexin 1 receptor (OX1R) knockout mice, but not orexin 2 receptor (OX2R) or OX1R/OX2R double knockout mice.

View Article and Find Full Text PDF

Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist.

View Article and Find Full Text PDF

The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) regulate sleep and other behavioral functions in mammals, and are therapeutic targets for sleep and wake disorders. The human receptors hOX1R and hOX2R, which are 64% identical in sequence, have overlapping but distinct physiological functions and potential therapeutic profiles. We determined structures of hOX1R bound to the OX1R-selective antagonist SB-674042 and the dual antagonist suvorexant at 2.

View Article and Find Full Text PDF

Study Objectives: In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening.

View Article and Find Full Text PDF

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.

View Article and Find Full Text PDF

Dual orexin receptor antagonists (DORAs), or orexin 1 (OX1) and orexin 2 (OX2) receptor antagonists, have demonstrated clinical utility for the treatment of insomnia. Medicinal chemistry efforts focused on the reduction of bioactivation potential of diazepane amide 1 through the modification of the Western heterocycle resulted in the discovery of suvorexant, a DORA recently approved by the FDA for the treatment of insomnia. A second strategy towards reducing bioactivation risk is presented herein through the exploration of monocyclic quinazoline isosteres, namely substituted pyrimidines.

View Article and Find Full Text PDF

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6.

View Article and Find Full Text PDF

Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development.

View Article and Find Full Text PDF

Background: The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species.

View Article and Find Full Text PDF

The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli.

View Article and Find Full Text PDF

The orexinergic system has been implicated in a number of behaviors, including reward and incentive motivation. Orexin 1 receptor antagonism has been reported to reduce drug self-administration, conditioned place preference, and reinstatement in rodents, but the role of the orexin 2 receptor is unclear. Here we evaluated the impact of the novel and selective orexin 2 receptor antagonist, 2-SORA 18, on motivation for nicotine as measured by responding on a progressive ratio schedule, as well as cue-induced reinstatement of a response previously associated with nicotine reward, and nicotine-induced reinstatement.

View Article and Find Full Text PDF

Recent clinical studies have demonstrated that dual orexin receptor antagonists (OX1R and OX2R antagonists or DORAs) represent a novel treatment option for insomnia patients. Previously we have disclosed several compounds in the diazepane amide DORA series with excellent potency and both preclinical and clinical sleep efficacy. Additional SAR studies in this series were enabled by the expansion of the acetonitrile-assisted, diphosgene-mediated 2,4-dichloropyrimidine synthesis to novel substrates providing an array of Western heterocycles.

View Article and Find Full Text PDF

Analogs of the dual orexin receptor antagonist filorexant were prepared. Replacement of the ether linkage proved highly sensitive toward modification with an acetylene linkage providing compounds with the best in vitro and in vivo potency profiles.

View Article and Find Full Text PDF

Dual orexin receptor antagonists (DORAs) are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA)-A receptor modulators of distinct chemical structure and pharmacological properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone, and diazepam, alone or each in combination with ethanol.

View Article and Find Full Text PDF