Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix.
View Article and Find Full Text PDFThe compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD/ATP depletion.
View Article and Find Full Text PDFMetabolic diseases such as diabetes, pre-diabetes, non-alcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH) are becoming increasingly common. Ex vivo liver perfusions allow for a comprehensive analysis of liver metabolism using nuclear magnetic resonance (NMR), in nutritional conditions that can be rigorously controlled. As in silico simulations remain a primarily theoretical means of assessing hormone actions and the effects of pharmaceutical intervention, the perfused liver remains one of the most valuable test beds for understanding hepatic metabolism.
View Article and Find Full Text PDFType II diabetes and pre-diabetes are widely prevalent among adults. Elevated serum glucose levels are commonly treated by targeting hepatic gluconeogenesis for downregulation. However, direct measurement of hepatic gluconeogenic capacity is accomplished only via tracer metabolism approaches that rely on multiple assumptions, and are clinically intractable due to expense and time needed for the studies.
View Article and Find Full Text PDFOvine models of pregnancy have been used extensively to study maternal-fetal interactions and have provided considerable insight into nutrient transfer to the fetus. Ovine models have also been utilized to study congenital heart diseases. In this work, we demonstrate a comprehensive assessment of heart function and metabolism using a perinatal model of heart function with the addition of a [U-C]glucose as tracer to study central energy metabolism.
View Article and Find Full Text PDF