Publications by authors named "Anthony Ferte"

Ultrashort pulses can excite or ionize molecules and populate coherent electronic wave packets, inducing complex dynamics. In this Letter, we simulate the coupled electron-nuclear dynamics upon ionization to different electronic wave packets of (deuterated) benzene and fluoro-benzene molecules, quantum mechanically and in full dimensionality. In fluoro-benzene, the calculations unravel both interstate and intrastate quantum interferences that leave clear signatures of attochemistry and charge-directed dynamics in the shape of the autocorrelation function.

View Article and Find Full Text PDF

Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics.

View Article and Find Full Text PDF

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

View Article and Find Full Text PDF

The core valence separation (CVS) approximation is the most employed strategy to prevent the variational collapse of standard wave function optimization when attempting to compute electronic states bearing one or more electronic vacancies in core orbitals. Here, we explore the spurious consequences of this approximation on the properties of the computed core hole states. We especially focus on the less studied case of double core hole (DCH) states, whose spectroscopic interest has recently been rapidly growing.

View Article and Find Full Text PDF

Excited State Intramolecular Proton Transfer in pyrrol pyridine is theoretically investigated using non-adiabatic dynamics simulations. The photochemical process is completely characterised: the reaction time, the total yield and the accessibility of the conical intersection are evaluated. Finally, new mechanistic interpretation are extracted: the proton transfer reaction in this molecule is shown to be driven by two complementary mechanisms.

View Article and Find Full Text PDF

We recently developed [A. Ferté, , , 2020, , 4359] a method to compute single site double core hole (ssDCH or K) spectra. We refer to that method as NOTA+CIPSI.

View Article and Find Full Text PDF

Double core hole spectroscopy is an ideal framework for investigating photoionization shake-up satellites. Their important intensity in a single site double core hole (ssDCH) spectrum allows the exploration of the subtle mix of relaxation and correlation effects associated with the inherent multielectronic character of the shake-up process. We present a high-accuracy computation method for single photon double core-shell photoelectron spectra that combines a selected configuration interaction procedure with the use of non-orthogonal molecular orbitals to obtain unbiased binding energy and intensity.

View Article and Find Full Text PDF

Quantum chemistry is a discipline which relies heavily on very expensive numerical computations. The scaling of correlated wave function methods lies, in their standard implementation, between and , where N is proportional to the system size. Therefore, performing accurate calculations on chemically meaningful systems requires (i) approximations that can lower the computational scaling and (ii) efficient implementations that take advantage of modern massively parallel architectures.

View Article and Find Full Text PDF

We introduce an approximation to the short-range correlation energy functional with multideterminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient, and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional at a vanishing range-separation parameter and the known exact asymptotic expansion at a large range-separation parameter. When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives accurate dissociation energy curves of the H, Li, and Be molecules and thus appears as a promising way to accurately account for static correlation in range-separated density-functional theory.

View Article and Find Full Text PDF

The present work proposes to use density-functional theory (DFT) to correct for the basis-set error of wave-function theory (WFT). One of the key ideas developed here is to define a range-separation parameter which automatically adapts to a given basis set. The derivation of the exact equations are based on the Levy-Lieb formulation of DFT, which helps us to define a complementary functional which corrects uniquely for the basis-set error of WFT.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionked8nfvh323j2u6ja4e8sq3ken5cd20j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once