We demonstrate operation of a cladding-pumped hybrid ytterbium-doped HOM fiber amplifier and reconversion of the HOM output to Gaussian-like beam by using an axicon based reconversion system. The amplifier was constructed by concatenating single-mode and HOM ytterbium-doped double clad fibers, and was excited by a common multimode pump source. A continuous wave (cw) input signal of 97mW was amplified to 100W at the amplifier output, which yielded a gain of more than 30dB.
View Article and Find Full Text PDFHollow-core fibre (HCF) is a powerful technology platform offering breakthrough performance improvements in sensing, communications, higher-power pulse delivery and other applications. Free from the usual constraints on what materials can guide light, it promises qualitatively new and ideal operating regimes: precision signals transmitted free of nonlinearities, sensors that guide light directly in the samples they are meant to probe and so on. However, these fibres have not been widely adopted, largely because uncontrolled coupling between transverse and polarization modes overshadows their benefits.
View Article and Find Full Text PDFEnergy scaling of femtosecond fiber lasers has been constrained by nonlinear impairments and optical fiber damage. Reducing the optical irradiance inside the fiber by increasing mode size lowers these effects. Using an erbium-doped higher-order mode fiber with 6000 µm(2) effective area and output fundamental mode re-conversion, we show a breakthrough in pulse energy from a monolithic fiber chirped pulse amplification system using higher-order mode propagation generating 300 µJ pulses with duration <500 fs (FWHM) and peak power >600 MW at 1.
View Article and Find Full Text PDF