Background: Marfan syndrome (MFS) is an autosomal dominant multisystem connective tissue disorder with increased risk of aortopathy with a high risk of subsequent life-threatening aortic dissection. Diagnosing this condition is reliant on recognizing clinical features and genetic testing for confirming diagnosis, using the revised Ghent criteria.
Case Summary: We identified a 49-year-old patient who presented with dyspnoea, with Marfan syndrome (MFS) and a previously unreported variant in the fibrillin-1 gene (), designated c.
The aim of this study was to explore kidney failure (KF) in Bardet-Biedl syndrome (BBS), focusing on high-risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects.
View Article and Find Full Text PDFBackground: Bardet-Biedl syndrome (BBS) is a rare genetic disorder that severely inhibits primary cilia function. BBS is typified by obesity in adulthood, but pediatric weight patterns, and thus optimal periods of intervention, are poorly understood.
Objectives: To examine body mass differences by age, gender, and genotype in children and adolescents with BBS.
Objectives: To characterize the diversity and prevalence of thoraco-abdominal abnormalities in Bardet-Biedl syndrome (BBS), a model ciliopathy for understanding the role of cilia in human health.
Study Design: The Clinical Registry Investigating BBS, a worldwide registry exploring the phenotype and natural history of BBS, was used to conduct the study. Protected health information was obtained by subject or family interview and Health Insurance Portability and Accountability Act-approved release of data including imaging studies and genetic testing.
Transcription factors related to the insect sex-determination gene doublesex (DMRT proteins) control sex determination and/or sexual differentiation in diverse metazoans and are implicated in transitions between sex-determining mechanisms during vertebrate evolution [1]. In mice, Dmrt1 is required for male gonadal differentiation in somatic cells and germ cells [2-4]. DMRT1 also maintains male gonadal sex: its loss, even in adults, can trigger sexual cell-fate reprogramming in which male Sertoli cells transdifferentiate into their female equivalents-granulosa cells-and testicular tissue reorganizes to a more ovarian morphology [5].
View Article and Find Full Text PDFThe Lamin B receptor (LBR) gene has been described to encode a bifunctional protein. Mutations in the LBR gene can affect neutrophil segmentation and sterol reductase activity and have been associated with two different recognized clinical conditions, Pelger-Huet anomaly (PHA) and Greenberg skeletal dysplasia. PHA is a benign autosomal co-dominant laminopathy resulting in bilobed neutrophil nuclei in heterozygotes, and unsegmented (ovoid) neutrophil nuclei in homozygotes.
View Article and Find Full Text PDFDmrt1 (doublesex and mab-3 related transcription factor (1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds.
View Article and Find Full Text PDFDmrt1 belongs to the DM domain gene family of conserved sexual regulators. In the mouse Dmrt1 is expressed in the genital ridge (the gonadal primordium) in both sexes and then becomes testis-specific shortly after sex determination. The essential role of DMRT1 in testicular differentiation is well established, and includes transcriptional repression of the meiotic inducer Stra8.
View Article and Find Full Text PDFDmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. Here, we show that in mice of the 129Sv strain, loss of Dmrt1 causes a high incidence of teratomas, whereas these tumors do not form in Dmrt1 mutant C57BL/6J mice. Conditional gene targeting indicates that Dmrt1 is required in fetal germ cells but not in Sertoli cells to prevent teratoma formation.
View Article and Find Full Text PDFAtSUC9 (At5g06170), a sucrose (Suc) transporter from Arabidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport activity was analyzed.
View Article and Find Full Text PDF