Publications by authors named "Anthony D Keefe"

Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays.

View Article and Find Full Text PDF

The recent global COVID-19 pandemic has highlighted treatments for coronavirus infection as an unmet medical need. The main protease (M) has been an important target for the development of SARS-CoV-2 direct-acting antivirals. Nirmatrelvir as a covalent M inhibitor was the first such approved therapy.

View Article and Find Full Text PDF

Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55.

View Article and Find Full Text PDF

DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme.

View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of IL17A is linked to various inflammatory and autoimmune diseases, and using antibodies to inhibit it has shown to be an effective treatment option.
  • Researchers discovered a new class of small molecule inhibitors targeting IL17A through a DNA-encoded chemical library screening process.
  • These innovative inhibitors operate by binding symmetrically to the central cavities of the IL17A homodimer, utilizing a previously unknown interaction mode, and have been optimized for effectiveness in living organisms.
View Article and Find Full Text PDF

Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules.

View Article and Find Full Text PDF

The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes.

View Article and Find Full Text PDF

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database.

View Article and Find Full Text PDF

DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning.

View Article and Find Full Text PDF

Chemical ligation can be used to install encoding tags during the synthesis of DNA-encoded chemical libraries and can present a number of advantages. Here we describe methods to generate polymerase-readable oligonucleotide junctions and for the polymerase-mediated amplification of oligonucleotides ligated with these chemistries, including triazole junctions generated from 2'-ribo-3'-propargyl and 5'-azido oligonucleotides and from 2'-deoxy-3'-propargyl and 5'-azido oligonucleotides. We also present methods for the synthesis of phosphorothioate junctions from 3'-thiophospho and 5'-iodo oligonucleotides and for the synthesis of phosphodiester junctions from both 3'-hydroxy and 5'-phospho- and 3'-phospho and 5'-hydroxy oligonucleotides using 1-cyanoimidazole.

View Article and Find Full Text PDF

This study describes a novel series of UDP--acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of LpxA with no activity against LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against LpxA (best half-maximal inhibitory concentration (IC) <5 nM) and cellular activity against (best minimal inhibitory concentration (MIC) of 4 μg/mL).

View Article and Find Full Text PDF

Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e.

View Article and Find Full Text PDF

Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds -. Compound was further optimized via various structure-activity relationship (SAR) exploration methods to , a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties.

View Article and Find Full Text PDF

Herein we report the discovery of 2,4-1-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor β-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1-dicarboxamide scaffold, showing remarkable kinome selectivity.

View Article and Find Full Text PDF

Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar exhibited nanomolar ERα binding, antagonism, and degradation.

View Article and Find Full Text PDF

Mer is a member of the TAM (Tyro3, Axl, Mer) kinase family that has been associated with cancer progression, metastasis, and drug resistance. Their essential function in immune homeostasis has prompted an interest in their role as modulators of antitumor immune response in the tumor microenvironment. Here we illustrate the outcomes of an extensive lead-generation campaign for identification of Mer inhibitors, focusing on the results from concurrent, orthogonal high-throughput screening approaches.

View Article and Find Full Text PDF

The activity of the secreted phosphodiesterase autotaxin produces the inflammatory signaling molecule LPA and has been associated with a number of human diseases including idiopathic pulmonary fibrosis (IPF). We screened a single DNA-encoded chemical library (DECL) of 225 million compounds and identified a series of potent inhibitors. Optimization of this series led to the discovery of compound (X-165), a highly potent, selective, and bioavailable small molecule.

View Article and Find Full Text PDF
Article Synopsis
  • *A new machine learning method is applied to DEL selection data, which successfully identifies active compounds from a large set of commercial molecules.
  • *The method shows a high hit rate of around 30% across three different protein targets, leading to the discovery of effective, diverse, drug-like compounds that differ from known ligands.
View Article and Find Full Text PDF

Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes.

View Article and Find Full Text PDF

The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2).

View Article and Find Full Text PDF

ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.

View Article and Find Full Text PDF

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors.

View Article and Find Full Text PDF

We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays.

View Article and Find Full Text PDF