Publications by authors named "Anthony D Hawkins"

Investigators working with fish bioacoustics used to refer to fishes that have a narrow hearing bandwidth and poor sensitivity as "hearing generalists" (or "non-specialists"), while fishes that could detect a wider hearing bandwidth and had greater sensitivity were referred to as specialists. However, as more was learned about fish hearing mechanism and capacities, these terms became hard to apply since it was clear there were gradations in hearing capabilities. Popper and Fay, in a paper in Hearing Research in 2011, proposed that these terms be dropped because of the gradation.

View Article and Find Full Text PDF

This paper reviews the nature of substrate vibration within aquatic environments where seismic interface waves may travel along the surface of the substrate, generating high levels of particle motion. There are, however, few data on the ambient levels of particle motion close to the seabed and within the substrates of lakes and rivers. Nor is there information on the levels and the characteristics of the particle motion generated by anthropogenic sources in and on the substrate, which may have major effects upon fishes and invertebrates, all of which primarily detect particle motion.

View Article and Find Full Text PDF

The Atlantic cod (Gadus morhua) is among the commercially most important fish species in the world. Since sound plays such an important role in the lives of Atlantic cod and its related species, understanding of their bioacoustics is of great importance. Moreover, since cod are amenable to studies of hearing, especially in open bodies of water, they have the potential to become a "model species" for investigations of fish hearing.

View Article and Find Full Text PDF

Anthropogenic (man-made) sound has the potential to harm marine biota. Increasing concerns about these effects have led to regulation and mitigation, despite there being few data on which to base environmental management, especially for fishes and invertebrates. We argue that regulation and mitigation should always be developed by looking at potential effects from the perspectives of the animals and ecosystems exposed to the sounds.

View Article and Find Full Text PDF

Underwater sounds from human sources can have detrimental effects upon aquatic animals, including fishes. Thus, it is important to establish sound exposure criteria for fishes, setting out those levels of sound from different sources that have detrimental effects upon them, in order to support current and future protective regulations. This paper considers the gaps in information that must be resolved in order to establish reasonable sound exposure criteria for fishes.

View Article and Find Full Text PDF

The codfish family includes more than 500 species that vary greatly in their abundance in areas like the North Sea and are widely fished. Gadoids (codfish) gather at particular locations to spawn, where they exhibit complex reproductive behavior with visual and acoustic displays. Calls have been described from seven species, including the Atlantic cod and haddock.

View Article and Find Full Text PDF

Airguns used for offshore seismic exploration by the oil and gas industry contribute to globally increasing anthropogenic noise levels in the marine environment. There is concern that the omnidirectional, high intensity sound pulses created by airguns may alter fish physiology and behaviour. A controlled short-term field experiment was performed to investigate the effects of sound exposure from a seismic airgun on the physiology and behaviour of two socioeconomically and ecologically important marine fishes: the Atlantic cod () and saithe ().

View Article and Find Full Text PDF

Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell.

View Article and Find Full Text PDF

Directional hearing may enable fishes to seek out prey, avoid predators, find mates, and detect important spatial cues. Early sound localization experiments gave negative results, and it was thought unlikely that fishes utilized the same direction-finding mechanisms as terrestrial vertebrates. However, fishes swim towards underwater sound sources, and some can discriminate between sounds from different directions and distances.

View Article and Find Full Text PDF

This paper considers the importance of particle motion to fishes and invertebrates and the steps that need to be taken to improve knowledge of its effects. It is aimed at scientists investigating the impacts of sounds on fishes and invertebrates but it is also relevant to regulators, those preparing environmental impact assessments, and to industries creating underwater sounds. The overall aim of this paper is to ensure that proper attention is paid to particle motion as a stimulus when evaluating the effects of sound upon aquatic life.

View Article and Find Full Text PDF

Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10-30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems.

View Article and Find Full Text PDF

Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes.

View Article and Find Full Text PDF

This study examined the effects of exposure to a single acoustic pulse from a seismic airgun array on caged endangered pallid sturgeon (Scaphirhynchus albus) and on paddlefish (Polyodon spathula) in Lake Sakakawea (North Dakota, USA). The experiment was designed to detect the onset of physiological responses including minor to mortal injuries. Experimental fish were held in cages as close as 1 to 3 m from the guns where peak negative sound pressure levels (Peak- SPL) reached 231 dB re 1 μPa (205 dB re 1 μPa2·s sound exposure level [SEL]).

View Article and Find Full Text PDF

A critical concern with respect to marine animal acoustics is the issue of hearing "sensitivity," as it is widely used as a criterion for the onset of noise-induced effects. Important aspects of research on sensitivity to sound by marine animals include: uncertainties regarding how well these species detect and respond to different sounds; the masking effects of man-made sounds on the detection of biologically important sounds; the question how internal state, motivation, context, and previous experience affect their behavioral responses; and the long-term and cumulative effects of sound exposure. If we are to better understand the sensitivity of marine animals to sound we must concentrate research on these questions.

View Article and Find Full Text PDF

Auditory evoked potentials (AEPs) have become popular for estimating hearing thresholds and audiograms. What is the utility of these measurements? How do AEP audiograms compare with behavioral audiograms? In general, AEP measurements for fishes and marine mammals often underestimate behavioral thresholds, but comparisons are especially complicated when the AEP and behavioral measures are obtained under different acoustic conditions. There is no single representative relationship between AEP and behavioral audiograms and these audiograms should not be considered equivalent.

View Article and Find Full Text PDF

Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus.

View Article and Find Full Text PDF

To assess and manage the impact of man-made sounds on fish, we need information on how behavior is affected. Here, wild unrestrained pelagic fish schools were observed under quiet conditions using sonar. Fish were exposed to synthetic piling sounds at different levels using custom-built sound projectors, and behavioral changes were examined.

View Article and Find Full Text PDF

Pallid sturgeon and paddlefish were placed at different distances from a seismic air gun array to determine the potential effects on mortality and nonauditory body tissues from the sound from a single shot. Fish were held 7 days postexposure and then necropsied. No fish died immediately after sound exposure or over the postexposure period.

View Article and Find Full Text PDF

In assessing the impact of aquatic developments, it is important to evaluate whether accompanying underwater sounds might have adverse effects on fishes. Risk assessment can then be used to evaluate new and existing technologies for effective prevention, control, or mitigation of impacts. It is necessary to know the levels of sound that may cause potential harm to different species from different sources as well as those levels that are likely to be of no consequence.

View Article and Find Full Text PDF

In this paper, we discuss the issues encountered when trying to perform hearing experiments in water-filled tanks that are several meters in lateral extent, typically large in terms of the size of the animals under study but not necessarily so with respect to the wavelengths of interest. This paper presents measurements of pressure and particle motion fields in these "large" tanks. The observed characteristics and complexities are discussed in reference to their potential impact on the planning and interpretation of hearing experiments.

View Article and Find Full Text PDF

The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels.

View Article and Find Full Text PDF

Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves.

View Article and Find Full Text PDF