Publications by authors named "Anthony Condon"

Sensing of neighbours via the Red to Far-Red light ratio (R:FR) may exert a cap to yield potential in wheat. The effects of an increased R:FR inside the canopy were studied in dense wheat mini canopies grown in controlled environments by lowering FR. To distinguish between effects exerted by light sensing and assimilate supply, the treatments were complemented with elevated CO , applied between different developmental timepoints to specifically impact tillering, spike growth, floret fertility and grain filling, in different combinations.

View Article and Find Full Text PDF
Article Synopsis
  • Rht4 is a dwarf gene in bread wheat that responds to gibberellin (GA), but its effect on key traits like plant height and yield was previously unclear.
  • When exogenous GA was applied to dwarf wheat lines, their plant height increased by about 17.54%, and there were significant improvements in kernel weight and grain-filling rates compared to taller lines.
  • The study suggests that GA application enhances the grain-filling process in Rht4 dwarf lines and may help mitigate some negative effects, providing insights for future wheat breeding and research.
View Article and Find Full Text PDF

Low-lodging high-yielding wheat germplasm and SNP-tagged novel alleles for lodging were identified in a process that involved selecting donors through functional phenotyping for underlying traits with a designed phenotypic screen, and a crossing strategy involving multiple-donor × elite populations. Lodging is a barrier to achieving high yield in wheat. As part of a study investigating the potential to breed low-lodging high-yielding wheat, populations were developed crossing four low-lodging high-yielding donors selected based on lodging related traits, with three cultivars.

View Article and Find Full Text PDF

Background: The need for rapid in-field measurement of key traits contributing to yield over many thousands of genotypes is a major roadblock in crop breeding. Recently, leaf hyperspectral reflectance data has been used to train machine learning models using partial least squares regression (PLSR) to rapidly predict genetic variation in photosynthetic and leaf traits across wheat populations, among other species. However, the application of published PLSR spectral models is limited by a fixed spectral wavelength range as input and the requirement of separate custom-built models for each trait and wavelength range.

View Article and Find Full Text PDF

Highly repeatable, nondestructive, and high-throughput measures of above-ground biomass (AGB) and crop growth rate (CGR) are important for wheat improvement programs. This study evaluates the repeatability of destructive AGB and CGR measurements in comparison to two previously described methods for the estimation of AGB from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). Across three field experiments, contrasting in available water supply and comprising up to 98 wheat genotypes varying for canopy architecture, several concurrent measurements of LiDAR and AGB were made from jointing to anthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Photosynthesis is a key focus for improving cereal crop yields since breeders have nearly maxed out the potential for harvest index in wheat and rice.
  • The limitations of previous genetic advancements, like dwarfing genes from the green revolution, have led to a search for better biomass and radiation use efficiency.
  • Advances in high-throughput techniques and low-cost genotyping allow for a deeper understanding of genetic diversity in photosynthesis, revealing significant heritable traits in existing germplasm that can be targeted for breeding improvements.
View Article and Find Full Text PDF

Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an increased irregularity and a downward trend in rainfall. In addition, irrigated cropping faces declining water availability and increased competition from other users.

View Article and Find Full Text PDF

One way to increase yield potential in wheat is screening for natural variation in photosynthesis. This study uses measured and modelled physiological parameters to explore genotypic diversity in photosynthetic capacity (Pc, Rubisco carboxylation capacity per unit leaf area at 25 °C) and efficiency (Peff, Pc per unit of leaf nitrogen) in wheat in relation to fertilizer, plant stage, and environment. Four experiments (Aus1, Aus2, Aus3, and Mex1) were carried out with diverse wheat collections to investigate genetic variation for Rubisco capacity (Vcmax25), electron transport rate (J), CO2 assimilation rate, stomatal conductance, and complementary plant functional traits: leaf nitrogen, leaf dry mass per unit area, and SPAD.

View Article and Find Full Text PDF

Infrared canopy temperature (CT) is a well-established surrogate measure of stomatal conductance. There is ample evidence showing that genotypic variation in stomatal conductance is associated with grain yield in wheat. Our goal was to determine when CT repeatability is greatest (throughout the season and within the day) to guide CT deployment for research and wheat breeding.

View Article and Find Full Text PDF

Simple and repeatable methods are needed to select for deep roots under field conditions. A large-scale field experiment was conducted to assess the association between canopy temperature (CT) measured by airborne thermography and rooting depth determined by the core-break method. Three wheat populations, C306×Westonia (CW), Hartog×Drysdale (HD), and Sundor×Songlen (SS), were grown on stored soil water in NSW Australia in 2017 (n=196-252).

View Article and Find Full Text PDF

Greater availability of leaf dark respiration (R ) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of R data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non-destructive and high-throughput method of estimating R from leaf hyperspectral reflectance data that was derived from leaf R measured by a destructive high-throughput oxygen consumption technique.

View Article and Find Full Text PDF

Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data.

View Article and Find Full Text PDF

Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high-TE cultivar (cv. Drysdale) over its almost identical low-TE parent line (Hartog), from about -7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221-1,351 mm annual rainfall), under the present-day climate.

View Article and Find Full Text PDF

Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves.

View Article and Find Full Text PDF

We examined the effects of leaf temperature on the estimation of maximal Rubisco capacity (V ) from gas exchange measurements of wheat leaves using a C photosynthesis model. Cultivars of spring wheat (Triticum aestivum (L)) and triticale (X Triticosecale Wittmack) were grown in a greenhouse or in the field and measured at a range of temperatures under controlled conditions in a growth cabinet (2 and 21% O ) or in the field using natural diurnal variation in temperature, respectively. Published Rubisco kinetic constants for tobacco did not describe the observed CO response curves well as temperature varied.

View Article and Find Full Text PDF

Lower canopy temperature (CT), resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time required to measure all plots.

View Article and Find Full Text PDF

The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2 ∶ 3 and F3 ∶ 4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments.

View Article and Find Full Text PDF

Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution.

View Article and Find Full Text PDF

Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait.

View Article and Find Full Text PDF

Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting.

View Article and Find Full Text PDF

Reproductive stage water stress leads to spikelet sterility in wheat. Whereas drought stress at anthesis affects mainly grain size, stress at the young microspore stage of pollen development is characterized by abortion of pollen development and reduction in grain number. We identified genetic variability for drought tolerance at the reproductive stage.

View Article and Find Full Text PDF

In the South Australian wheat belt, cyclic drought is a frequent event represented by intermittent periods of rainfall which can occur around anthesis and post-anthesis in wheat. Three South Australian bread wheat (Triticum aestivum L.) cultivars, Excalibur, Kukri, and RAC875, were evaluated in one greenhouse and two growth-room experiments.

View Article and Find Full Text PDF

Background And Aims: The gibberellin-insensitive Rht-B1b and Rht-D1b dwarfing genes are known to reduce the size of cells in culms, leaves and coleoptiles of wheat. Resulting leaf area development of gibberellin-insensitive wheats is poor compared to standard height (Rht-B1a and Rht-D1a) genotypes. Alternative dwarfing genes to Rht-B1b and Rht-D1b are available that reduce plant height, such as the gibberellin-responsive Rht8 gene.

View Article and Find Full Text PDF

The aim of this study was to test the influence of salinity (1, 20, 40 and 80 mol m) on the transpiration efficiency (W = biomass / water transpired), lamina gas exchange and carbon isotope discrimination (Δ) of grapevine (Vitis vinifera L. cv. Sultana) grown on own roots or grafted to a Cl-excluding rootstock (Ramsey; Vitis champiniL.

View Article and Find Full Text PDF