Publications by authors named "Anthony Clabeau"

Many optical applications, including free-space optical communications, lidar, and astronomical measurements, are impacted by the presence of light-scattering particles also known as obscurants. Scattering from particles consisting of sand, dust, dirt, and other substances can significantly degrade optical signals. For many obscurants, the index of refraction is dependent on the wavelength of light, and there exists a Christiansen wavelength (λ) at which scattering is at a minimum.

View Article and Find Full Text PDF

We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances.

View Article and Find Full Text PDF

Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an AsS-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal.

View Article and Find Full Text PDF

We present a method of post-deposition tuning of the optical properties of thin film dielectric filters and mirrors containing chalcogenide glass (ChG) layers by thermally adjusting their refractive index. A common challenge associated with the use of ChG films in practical applications is that they suffer from slight run-to-run variations in optical properties resulting from hard-to-control changes in source material and deposition conditions. These variations lead to inconsistencies in optical constants, making the fabrication of devices with prescribed optical properties challenging.

View Article and Find Full Text PDF