Publications by authors named "Anthony C Fiumera"

The cost of reproduction is well studied in females but only recently have the costs of mating been investigated in males. Research suggests that males allocate resources between subsequent mating events, resulting in differential success across mating bouts. Selection should favor allocation strategies that match the likelihood of successive matings.

View Article and Find Full Text PDF

Genetic variation in mitochondrial and nuclear genomes can perturb mitonuclear interactions and lead to phenotypic differences between individuals and populations. Despite their importance to most complex traits, it has been difficult to identify the interacting mitonuclear loci. Here, we present a novel advanced intercrossed population of Saccharomyces cerevisiae yeasts, called the Mitonuclear Recombinant Collection (MNRC), designed explicitly for detecting mitonuclear loci contributing to complex traits.

View Article and Find Full Text PDF

Toxicant resistance is a complex trait, affected both by genetics and the environment. Like most complex traits, it can exhibit sexual dimorphism, yet sex is often overlooked as a factor in studies of toxicant resistance. Paraquat, one such toxicant, is a commonly used herbicide and is known to produce mitochondrial oxidative stress, decrease dopaminergic neurons and dopamine (DA) levels, and decrease motor ability.

View Article and Find Full Text PDF

Anthropomorphic effects are changing the planet, and therefore, organisms are being exposed to many new biotic and abiotic stressors. Exposure to multiple stressors can affect organisms in ways that are different than the sum of their individual effects, and these interactions are often difficult to predict. Atrazine and paraquat are two of the most widely used herbicides in the United States, and are individually known to increase oxidative damage, affect dopaminergic functioning, reduce longevity, and alter motor ability in non-target organisms.

View Article and Find Full Text PDF

Nanosized titanium dioxide (TiO) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support.

View Article and Find Full Text PDF

Genetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mito-nuclear interactions.

View Article and Find Full Text PDF

Female Drosophila melanogaster frequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide, SP) to determine whether she had recently mated.

View Article and Find Full Text PDF

Atrazine is the one of the most widely used herbicides in the United States and non-target organisms may encounter it in the environment. Atrazine is known to affect male reproduction in both vertebrates and invertebrates but less is known about its effects on other fitness traits. Here we assessed the effects of five different chronic exposure levels on a variety of fitness traits in Drosophila melanogaster.

View Article and Find Full Text PDF

Atrazine is a commonly utilized herbicide to control broadleaf weeds in the agricultural setting. It can, however, have negative effects on male reproductive performance in a variety of vertebrate species. Much less is known, however, about the effects of atrazine on invertebrates.

View Article and Find Full Text PDF

Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds.

View Article and Find Full Text PDF

Mitochondria are essential multifunctional organelles whose metabolic functions, biogenesis, and maintenance are controlled through genetic interactions between mitochondrial and nuclear genomes. In natural populations, mitochondrial efficiencies may be impacted by epistatic interactions between naturally segregating genome variants. The extent that mitochondrial-nuclear epistasis contributes to the phenotypic variation present in nature is unknown.

View Article and Find Full Text PDF

Female Drosophila melanogaster frequently mate with multiple males, and the success of a given male depends not only on his genotype but also on the genotype of his competitor. Here, we assess how natural genetic variation affects male-male interactions for traits influencing pre- and postcopulatory sexual selection. Males from a set of 66 chromosome substitution lines were competed against each other in a 'round-robin' design, and paternity was scored using bulk genotyping.

View Article and Find Full Text PDF

Genetic variation among females is likely to influence the outcome of both pre- and post-copulatory sexual selection in Drosophila melanogaster. Here we use association testing to survey natural variation in 10 candidate female genes for their effects on female reproduction. Females from 91 chromosome two substitution lines were scored for phenotypes affecting pre- and post-copulatory sexual selection such as mating and remating rate, propensity to use sperm from the second male to mate, and measures of fertility.

View Article and Find Full Text PDF

In many species, seminal fluid proteins (SFPs) affect female post-mating behavioral patterns, including sperm storage, egg laying, feeding, and remating. Yet, few studies have investigated the patterns of allocation, depletion, and replenishment of SFPs in male animals, despite the importance of these proteins to male and female reproductive success. To investigate such SFP dynamics, it is necessary to have a sensitive method for quantifying SFP levels in males and mated females.

View Article and Find Full Text PDF

Females of many animal species store sperm for taxon-specific periods of time, ranging from a few hours to years. Female sperm storage has important reproductive and evolutionary consequences, yet relatively little is known of its molecular basis. Here, we report the isolation of a loss-of-function mutation of the Drosophila melanogaster Acp29AB gene, which encodes a seminal fluid protein that is transferred from males to females during mating.

View Article and Find Full Text PDF

Correlations between male body size and phenotypes impacting post-copulatory sexual selection are commonly observed during the manipulation of male body size by environmental rearing conditions. Here, we control for environmental influences and test for genetic correlations between natural variation in male body size and phenotypes affecting post-copulatory sexual selection in Drosophila melanogaster. Dry weights of virgin males from 90 second-chromosome and 88 third-chromosome substitution lines were measured.

View Article and Find Full Text PDF

In Drosophila melanogaster, accessory gland proteins (Acps) that a male transfers during mating affect his reproductive success by altering the female's behaviour and physiology. To test the role of male condition in the expression of Acps, we manipulated the pre-adult environment and examined adult males for relative transcript abundance of nine Acps, and for post-copulatory traits that Acps influence. Larval culture density had no effect on any measured trait.

View Article and Find Full Text PDF

Understanding how variation in reproductive success is related to demography is a critical component in understanding the life history of an organism. Parentage analysis using molecular markers can be used to estimate the reproductive success of different groups of individuals in natural populations. Previous models have been developed for cases where offspring are random samples from the population but these models do not account for the presence of full- and half-sibs commonly found in large clutches of many organisms.

View Article and Find Full Text PDF

We applied association analysis to elucidate the genetic basis for variation in phenotypes affecting postcopulatory sexual selection in a natural population of Drosophila melanogaster. We scored 96 third chromosome substitution lines for nine phenotypes affecting sperm competitive ability and genotyped them at 72 polymorphisms in 13 male reproductive genes. Significant heterogeneity among lines (P < 0.

View Article and Find Full Text PDF

One of the most sharply defined sexual conflicts arises when the act of mating is accompanied by an inflated risk of death. Several reports have documented an increased death rate of female Drosophila as a result of recurrent mating. Transgenic and mutation experiments have further identified components of seminal fluid that are at least in part responsible for this toxicity.

View Article and Find Full Text PDF

Multiple mating by females establishes the opportunity for postcopulatory sexual selection favoring males whose sperm is preferentially employed in fertilizations. Here we use natural variation in a wild population of Drosophila melanogaster to investigate the genetic basis of sperm competitive ability. Approximately 101 chromosome 2 substitution lines were scored for components of sperm competitive ability (P1', P2', fecundity, remating rate, and refractoriness), genotyped at 70 polymorphic markers in 10 male reproductive genes, and measured for transcript abundance of those genes.

View Article and Find Full Text PDF

Most genetic surveys of parentage in nature sample only a small fraction of the breeding population. Here we apply microsatellite markers to deduce the genetic mating system and assess the reproductive success of females and males in an extensively collected, semi-closed stream population of the mottled sculpin fish, Cottus bairdi. In this species, males guard nest rocks where females deposit the eggs for fertilization.

View Article and Find Full Text PDF