Publications by authors named "Anthony C Duncan"

Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm.

View Article and Find Full Text PDF

One major factor inhibiting natural wound-healing processes is infection through bacterial biofilms, particularly in the case of chronic wounds. In this study, the micro/nanostructure of a wound dressing was optimized in order to obtain a more efficient antibiofilm protein-release profile for biofilm inhibition and/or detachment. A 3D substrate was developed with asymmetric polyhydroxyalkanoate (PHA) membranes to entrap Dispersin B (DB), the antibiofilm protein.

View Article and Find Full Text PDF

A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL).

View Article and Find Full Text PDF

It is known for roughly a decade that bacterial communities (called biofilms) are responsible for significant enhanced antibiotherapy resistance. Biofilms are involved in tissue persistent infection, causing direct or collateral damage leading to chronic wounds development and impairing natural wound healing. In this study, we are interested in the development of supported protein materials which consist of asymmetric membranes as reservoir supports for the incorporation and controlled release of biomolecules capable of dissolving biofilms (or preventing their formation) and their use as wound dressing for chronic wound treatment.

View Article and Find Full Text PDF

One of the major challenges of proteomics today is to increase the power potential for the identification of as many proteins as possible and to characterize their interactions with specific free ligands (interactomics) or present on cell walls (cell marker), in order to obtain a global, integrated view of disease processes, cellular processes and networks at the protein level. The work presented here proposes the development of biofunctionalized magnetic nanobeads that might be used for interactomic investigations. The strategy consisted in immobilizing proteins via a non covalent technique that provides greater possibilities for the advent of faster, cheaper and highly miniaturizable protein analysis systems, in particular in situations where the amount of isolated protein is scarce (trace proteins).

View Article and Find Full Text PDF

This chapter describes the design, practical construction, and characterization of P-DNA and their applications in building a new generation of DNA chips. P-DNAs are artificial covalent assemblies involving a histidine tag head able to bind to modified phospholipids, a core protein domain derived from cytochrome b5 by genetic engineering that features specific spectroscopic and electrochemical properties useful for detection, a synthetic linker acting as a spacer, and an oligonucleotide acting as a probe. P-DNA has the property of being able to efficiently self-associate to a supported bilayer including nickel-iminodiacetate-modified phospholipids.

View Article and Find Full Text PDF