Publications by authors named "Anthony Bugaut"

G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence.

View Article and Find Full Text PDF

Telomeres are nucleoprotein structures that cap and protect the natural ends of chromosomes. Telomeric DNA G-rich strands can form G-quadruplex (or G4) structures. Ligands that bind to and stabilize G4 structures can lead to telomere dysfunctions by displacing shelterin proteins and/or by interfering with the replication of telomeres.

View Article and Find Full Text PDF

Human telomeric DNA is composed of GGGTTA repeats. The presence of consecutive guanines makes the telomeric G-strand prone to fold into contiguous (or tandem) G-quadruplexes (G4s). The aim of this study was to provide a clarified picture of the stability of telomeric tandem G4 structures as a function of the number of G4 units and of boundary sequences, and an understanding of the diversity of their melting behaviors in terms of the single G4 units composing them.

View Article and Find Full Text PDF

RNA molecules can fold into noncanonical structures such as the four-stranded structures known as G-quadruplexes. G-quadruplexes in the transcriptome have recently emerged as relevant regulatory elements of gene expression. Conformational transitions in RNA molecules offer an important way to regulate their biological functions.

View Article and Find Full Text PDF

RNA structures in the untranslated regions (UTRs) of mRNAs influence post-transcriptional regulation of gene expression. Much of the knowledge in this area depends on canonical double-stranded RNA elements. There has been considerable recent advancement of our understanding of guanine(G)-rich nucleic acids sequences that form four-stranded structures, called G-quadruplexes.

View Article and Find Full Text PDF

Several recent studies have provided evidence that LIN28, a cytoplasmic RNA-binding protein, inhibits the biogenesis of members of the let-7 microRNA family at the Dicer step in both mammals and Caenorhabditis elegans. However, the precise mechanism of inhibition is still poorly understood. Here we report on an in vitro study, which combined RNase footprinting, gel shift binding assays, and processing assays, to investigate the molecular basis and function of the interaction between the native let-7g precursor (pre-let-7g) and LIN28.

View Article and Find Full Text PDF

G-Quadruplexes are noncanonical nucleic acid secondary structures based on guanine association that are readily adopted by G-rich RNA and DNA sequences. Naturally occurring genomic G-quadruplex-forming sequences have functional roles in biology that are mediated through structure. To appreciate how this is achieved, an understanding of the likelihood of G-quadruplex formation and the structural features of the folded species under a defined set of conditions is informative.

View Article and Find Full Text PDF

We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells.

View Article and Find Full Text PDF

The BCL-2 gene encodes a 25 kDa membrane protein that plays critical roles in the control of apoptosis. The regulation of BCL-2 gene expression is highly complex and occurs both transcriptionally and posttranscriptionally. In particular, the 5' upstream region of BCL-2 contains a number of elements that control its expression.

View Article and Find Full Text PDF

Herein, we show that a naturally occurring RNA G-quadruplex element within the 5' UTR of the human NRAS proto-oncogene is a target for a small molecule that inhibits translation in vitro. The present study provides a first demonstration that natural 5' UTR mRNA G-quadruplexes have potential as molecular targets for small molecules that modulate translation.

View Article and Find Full Text PDF

The let-7 microRNA (miRNA) is an ultraconserved regulator of stem cell differentiation and developmental timing and a candidate tumor suppressor. Here we show that LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 processing in Caenorhabditis elegans. We demonstrate that lin-28 is necessary and sufficient to block let-7 activity in vivo; LIN-28 directly binds let-7 pre-miRNA to prevent Dicer processing.

View Article and Find Full Text PDF

Guanine-rich DNA sequences with the ability to form quadruplex structures are enriched in the promoter regions of protein-coding genes, particularly those of proto-oncogenes. G-quadruplexes are structurally polymorphic and their folding topologies can depend on the sample conditions. We report here on a structural study using solution state NMR spectroscopy of a second G-quadruplex-forming motif (c-kit2) that has been recently identified in the promoter region of the c-kit oncogene.

View Article and Find Full Text PDF

Oligonucleotides complementary to RNA sequences interact poorly with folded target regions. In vitro selection of oligonucleotides carried out against RNA structures have led to aptamers that frequently differ from antisense sequences, but rather take advantage of non-double-stranded peculiarities of the target. Studies along this line provide information about tertiary RNA architectures as well as their interaction with ligand of interest.

View Article and Find Full Text PDF

Nucleic acid secondary structures in the 5' untranslated regions (UTRs) of mRNAs have been shown to play a critical role in translation regulation. We recently demonstrated that a naturally occurring, conserved, and stable RNA G-quadruplex element (5'-GGGAGGGGCGGGUCUGGG-3'), located close to the 5' cap within the 5' UTR of the NRAS proto-oncogene mRNA, modulates gene expression at the translational level. Herein, we show that the translational effect of this G-quadruplex motif in NRAS 5' UTR is not uniform, but rather depends on the location of the G-quadruplex-forming sequence.

View Article and Find Full Text PDF

Molecular mechanisms that regulate gene expression can occur either before or after transcription. The information for post-transcriptional regulation can lie within the sequence or structure of the RNA transcript and it has been proposed that G-quadruplex nucleic acid sequence motifs may regulate translation as well as transcription. Here, we have explored the incidence of G-quadruplex motifs in and around the untranslated regions (UTRs) of mRNA.

View Article and Find Full Text PDF

G-Rich sequences found within biologically important regions of the genome have been shown to form intramolecular G-quadruplexes with varied loop lengths and sequences. Many of these quadruplexes will be distinguishable from each other on the basis of their thermodynamic stabilities and folded conformations. It has been proposed that loop lengths can strongly influence the topology and stability of intramolecular G-quadruplexes.

View Article and Find Full Text PDF

Guanine-rich nucleic acid sequences can adopt noncanonical four-stranded secondary structures called guanine (G)-quadruplexes. Bioinformatics analysis suggests that G-quadruplex motifs are prevalent in genomes, which raises the need to elucidate their function. There is now evidence for the existence of DNA G-quadruplexes at telomeres with associated biological function.

View Article and Find Full Text PDF

SELEX (for Systematic Evolution of Ligands by Exponential enrichment) has proven to be extraordinarily powerful for the isolation of DNA or RNA aptamers that bind with high affinity and specificity to a wide range of molecular targets. However, the modest chemical functionality of nucleic acids poses some limits on the versatility of aptamers as binders and catalysts. To further improve the properties of aptamers, additional chemical diversity must be introduced.

View Article and Find Full Text PDF