Introduction: Degenerative disc disease is a common cause of chronic low back pain. Surgical intervention is an invasive treatment associated with high costs. There is growing interest in regenerative medicine as a less invasive but direct disc treatment for chronic discogenic low back pain.
View Article and Find Full Text PDFCompatible vial container closure system (CCS) components in combination with a proper capping process are crucial to ensuring reliable performance, maintaining container closure integrity (CCI), and achieving CCS visual acceptance. CCI is essential for parenteral packaging and must be maintained throughout the entire sealed drug product life. In order to build the most robust CCS performance, many variables, including component selection, fit, function, and capping processes, must be set according to the actual dimensions of the CCS components used.
View Article and Find Full Text PDFPDA J Pharm Sci Technol
January 2021
There has been a growing interest in the assessment of container closure systems (CCS) for cold storage and shipment. Prior publications have lacked systematic considerations for the impact of dynamic time temperature transition on sealing performance associated with the viscoelastic characteristics of rubber stoppers used in container closure systems (CCSs). This paper demonstrates that sealing performance changes inherently and is fundamentally both time- and temperature-dependent.
View Article and Find Full Text PDFThe flavoenzyme monomeric sarcosine oxidase (MSOX) catalyzes a complex set of reactions currently lacking a consensus mechanism. A key question that arises in weighing competing mechanistic models of MSOX function is to what extent ingress of O2 from the solvent (and its egress after an unsuccessful oxidation attempt) limits the overall catalytic rate. To address this question, we have applied to the MSOX/O2 system the relatively new simulation method of Markovian milestoning molecular dynamics simulations, which, as we recently showed [ Yu et al.
View Article and Find Full Text PDFMonomeric sarcosine oxidase (MSOX) is a flavoprotein D-amino acid oxidase with reported sarcosine and oxygen activation sites on the and faces of the flavin ring, respectively. O transport routes to the catalytic interior are not well understood and are difficult to ascertain solely from MSOX crystal structures. A composite free-energy method known as single-sweep is used to map and thermodynamically characterize oxygen sites and routes leading to the catalytically active Lys265 from the protein surface.
View Article and Find Full Text PDF