Publications by authors named "Anthony Bougas"

The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .

View Article and Find Full Text PDF

To combat the dangerously increasing pathogenic resistance to antibiotics, we developed new pharmacophores by chemically modifying a known antibiotic, which remains to this day the most familiar and productive way for novel antibiotic development. We used as a starting material the chloramphenicol base, which is the free amine group counterpart of the known chloramphenicol molecule antibiotic upon removal of its dichloroacetyl tail. To this free amine group, we tethered alpha- and beta-amino acids, mainly glycine, lysine, histidine, ornithine and/or beta-alanine.

View Article and Find Full Text PDF

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect.

View Article and Find Full Text PDF

Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se.

View Article and Find Full Text PDF

Ketolides belong to the latest generation of macrolides and are not only effective against macrolide susceptible bacterial strains but also against some macrolide resistant strains. Here we present data providing insights into the mechanism of action of K-1602, a novel alkyl-aryl-bearing fluoroketolide. According to our data, the K-1602 interacts with the ribosome as a one-step slow binding inhibitor, displaying an association rate constant equal to 0.

View Article and Find Full Text PDF