Publications by authors named "Anthony Boiarski"

This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol.

View Article and Find Full Text PDF

The molecular diffusion dynamics in unconstrained cases has been studied thoroughly during the last two centuries, leading to the well-known Fick's diffusion laws and Stokes-Einstein equation. More recently, a new impulse to the study of this topic has been provided by the necessity of understanding the behavior of solute particles in the presence of environmental constraints of size comparable to the molecular dimensions. In this work, we investigate the diffusion kinetics of biomolecules, such as bovine serum albumin, interferon, and lysozyme, through microfabricated silicon membranes, having pores of nanometric size in only one dimension, in the range from few to tens of nanometers (the other dimensions are in the mum range).

View Article and Find Full Text PDF

Objective: Immunoisolating membranes protect transplanted xenogeneic tissue by physically isolating them from the host. However, most are commercial filter membranes that do not possess all the features needed for immunoisolation. Silicon nanopore membranes are thin layers of silicon containing tens of thousands of nanometer-sized channels, which allow passive diffusion of small molecules.

View Article and Find Full Text PDF

Top-down microfabrication techniques were used to create silicon-based membranes consisting of arrays of uniform channels having a width as small as 7 nm. The measurement of diffusion kinetics of solutes across these membranes under sink conditions reveals non-Fickian behavior as the nanopore width approaches the hydrodynamic diameter of the solute. Zero-order diffusion of interferon is observed at channel width of 20 nm, and the same phenomenon occurs with albumin and 13-nm-wide channels, whereas Fickian diffusion kinetics is seen at 26 nm and larger pore sizes.

View Article and Find Full Text PDF