Identification of clonal IGH, IGK and IGL gene rearrangements offers diagnostic adjunct in suspected B-cell neoplasms. However, many centres omit IGL analysis as its value is uncertain. A review of 567 cases with IGH, IGK and IGL rearrangement assessed using BIOMED-2 assays showed clonal immunoglobulin gene rearrangement in 54% of cases, of which 24% had a clonal IGL rearrangement.
View Article and Find Full Text PDFThe diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal.
View Article and Find Full Text PDFLarge regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus.
View Article and Find Full Text PDFMutations in the JAK2 gene are prevalent in the human myeloid malignancies, being present in virtually all cases of polycythemia vera, and a significant proportion of patients with other myeloproliferative disorders. Various methods for the detection of acquired mutations in this gene are available depending on the need for sensitivity, quantification, or the ability to detect many different mutations. We summarize the various methods published and discuss their relative merits for each application.
View Article and Find Full Text PDFMolecular genetic assays for the detection of the JAK2 V617F (c.1849G>T) and other pathogenetic mutations within JAK2 exon 12 and MPL exon 10 are part of the routine diagnostic workup for patients presenting with erythrocytosis, thrombocytosis or otherwise suspected to have a myeloproliferative neoplasm. A wide choice of techniques are available for the detection of these mutations, leading to potential difficulties for clinical laboratories in deciding upon the most appropriate assay, which can lead to problems with inter-laboratory standardization.
View Article and Find Full Text PDFThe BRAF V600E mutation has recently been described in all cases of hairy cell leukaemia (HCL). We have developed and validated a rapid and sensitive high-resolution melting analysis (HRMA) assay that detects BRAF exon 15 mutations when hairy cells are as low as 5-10% in a sample. All 48 HCL patients were positive for the BRAF V600E mutation, while 114 non-HCL cases were all V600E negative.
View Article and Find Full Text PDFApproximately 50% of essential thrombocythaemia and primary myelo-fibrosis patients do not have a JAK2 V617F mutation. Up to 5% of these are reported to have a MPL exon 10 mutation but testing for MPL is not routine as there are multiple mutation types. The ability to routinely assess both JAK2 and MPL mutations would be beneficial in the differential diagnosis of unexplained thrombocytosis or myelofibrosis.
View Article and Find Full Text PDFMutations in the C-terminal region of nucleophosmin in acute myeloid leukemia (AML) result in aberrant cytoplasmic nucleophosmin (cNPM) in leukemic blast cells which is detectable by immunocytochemistry in bone marrow trephine (BMT) biopsy sections. We tested whether cNPM is detectable by immunocytochemistry in air-dried smears of AML with nucleophosmin1 (NPM1) mutations. An immunoalkaline phosphatase method was developed using the OCI-AML3 cell line, known to have mutated NPM1, and assessed on blood and marrow smears of 60 AML cases.
View Article and Find Full Text PDFThe majority of Myeloproliferative Neoplasms (MPNs) are characterised by mutations in genes encoding molecules or receptors involved in cell signalling, the most common being the JAK2 V617F mutation. This mutation leads to ligand-independent activation of downstream signalling pathways by constitutive phosphorylation. The signalling pathways affected include the Janus kinase-signal transducers and activators of transcription (JAK-STAT) and phosphotidylinositide-3 kinase (PI3K) pathways, which regulate cell survival and apoptosis respectively.
View Article and Find Full Text PDFThis study looked for clonal diversity in patients with a myeloproliferative neoplasm associated with more than one acquired genetic lesion. A tyrosine kinase mutation and a cytogenetic lesion were present in the same clone in six of seven patients. By contrast, the genetic lesions were present in separate clones in all six patients with two tyrosine kinase pathway mutations.
View Article and Find Full Text PDFBackground: The JAK2 V617F mutation can be found in patients with polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis. Mutation or methylation of other components of JAK/STAT signaling, such as the negative regulators suppressor of cytokine signaling 1 (SOCS1) and SOCS3, may contribute to the pathogenesis of both JAK2 V617F positive and negative myeloproliferative disorders.
Design And Methods: A cohort of patients with myeloproliferative disorders was assessed for acquired mutations, aberrant expression and/or CpG island hypermethylation of SOCS1 and SOCS3.
Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet cDNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies.
View Article and Find Full Text PDFBIOMED-2 polymerase chain reaction (PCR) assays for clonality analysis of immunoglobulin (IG) and T-cell receptor (TCR) gene rearrangements were evaluated in routine haematopathological practice where paraffin-embedded tissues constitute the majority of specimens. One hundred and twenty-five fresh/frozen and 316 paraffin specimens were analysed for DNA quality and clonality. Seventy-nine per cent of paraffin specimens yielded PCR products of over 300 bp.
View Article and Find Full Text PDFThe identification of an acquired mutation of JAK2 in patients with myeloproliferative disorders has raised questions about the relationship between mutation-positive and mutation-negative subtypes, timing of the JAK2 mutation, and molecular mechanisms of disease progression. Here we demonstrate that patients with V617F(-) essential thrombocythemia do not commonly progress to become V617F(+). Consistent with the concept of distinct pathogenetic mechanisms, we show that patients with and without the JAK2 mutation have different patterns of cytogenetic abnormality, with virtually all patients carrying the 20q deletion or trisomy 9 being V617F(+).
View Article and Find Full Text PDFDeletions of the derivative 9 chromosome (der(9)) are associated with poor prognosis in chronic myeloid leukemia (CML). Several models have been proposed to account for this association. To distinguish between the various models we mapped the deletion in 69 Philadelphia-positive CML patients carrying a der(9) deletion and compared the size of the deletion with the patients' outcome.
View Article and Find Full Text PDFA single acquired mutation in the JAK2 gene has recently been described in human myeloproliferative disorders, including most patients with polycythemia vera and about half of those with essential thrombocythemia and idiopathic myelofibrosis. Reliable and easily implemented methods for detection of this V617F mutation promise to revolutionize the way these disorders are diagnosed and classified, and may in the future have implications for targeted therapeutics. Two polymerase chain reaction-based methods for detection of the mutation are described here.
View Article and Find Full Text PDFBackground: An acquired V617F mutation in JAK2 occurs in most patients with polycythaemia vera, but is seen in only half those with essential thrombocythaemia and idiopathic myelofibrosis. We aimed to assess whether patients with the mutation are biologically distinct from those without, and why the same mutation is associated with different disease phenotypes.
Methods: Two sensitive PCR-based methods were used to assess the JAK2 mutation status of 806 patients with essential thrombocythaemia, including 776 from the Medical Research Council's Primary Thrombocythaemia trial (MRC PT-1) and two other prospective studies.
Semin Hematol
October 2005
The first possibly causative molecular aberration in patients with myeloproliferative disorders has recently been described. A point mutation in the Janus kinase 2 exchanging a valine for a phenylalanine at position 617 (JAK2 V617F) was found in 65% to 97% of polycythemia vera (PV) patients, as well as in approximately 50% of essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF) patients. In addition, a growing set of molecular and genetic markers, some possibly contributing to disease development, some more likely epiphenomena, has been characterized in these patients over the last few years.
View Article and Find Full Text PDFL3mbtl encodes a member of the Polycomb group of proteins, which function as transcriptional repressors in large protein complexes. The Drosophila D-l(3)mbt protein is considered a tumor suppressor since its inactivation results in brain tumors. The human L3MBTL gene lies in a region of chromosome 20 frequently deleted in patients with myeloid malignancies and has been proposed as a candidate 20q tumor suppressor gene.
View Article and Find Full Text PDFBackground: Human myeloproliferative disorders form a range of clonal haematological malignant diseases, the main members of which are polycythaemia vera, essential thrombocythaemia, and idiopathic myelofibrosis. The molecular pathogenesis of these disorders is unknown, but tyrosine kinases have been implicated in several related disorders. We investigated the role of the cytoplasmic tyrosine kinase JAK2 in patients with a myeloproliferative disorder.
View Article and Find Full Text PDF