Publications by authors named "Anthony Bannon"

Plasma biomarkers for Alzheimer's disease (AD) are increasingly being used to assist in making an etiological diagnosis for cognitively impaired (CI) individuals or to identify cognitively unimpaired (CU) individuals with AD pathology who may be eligible for prevention trials. However, a better understanding of the timing of plasma biomarker changes is needed to optimize their use in clinical and research settings. The aim of this study was to evaluate the timing of change of key AD plasma biomarkers (Aβ42/Aβ40, p-tau217, p-tau181, GFAP and NfL) from six different companies, along with established AD biomarkers, using AD progression timelines based on amyloid and tau PET.

View Article and Find Full Text PDF
Article Synopsis
  • Plasma phospho-tau 217 (pTau217) assays, when performed on the common Lumipulse-G® platform, can effectively identify Alzheimer's disease (AD) by analyzing β-amyloid (Aβ) status and tau staging in patients.
  • In a study with 388 participants, pTau217 showed strong correlations with PET imaging results, achieving high accuracy rates in distinguishing between Aβ-negative and Aβ-positive individuals, as well as different stages of tau pathology.
  • The findings suggest that the plasma pTau217 assay is a reliable tool for predicting who might benefit from anti-β-amyloid treatments, emphasizing its potential for broader clinical use in AD diagnostics.
View Article and Find Full Text PDF

Introduction: Blood tests have the potential to improve the accuracy of Alzheimer's disease (AD) clinical diagnosis, which will enable greater access to AD-specific treatments. This study compared leading commercial blood tests for amyloid pathology and other AD-related outcomes.

Methods: Plasma samples from the Alzheimer's Disease Neuroimaging Initiative were assayed with AD blood tests from C2N Diagnostics, Fujirebio Diagnostics, ALZPath, Janssen, Roche Diagnostics, and Quanterix.

View Article and Find Full Text PDF

Introduction: Blood tests have the potential to improve the accuracy of Alzheimer disease (AD) clinical diagnosis, which will enable greater access to AD-specific treatments. This study compared leading commercial blood tests for amyloid pathology and other AD-related outcomes.

Methods: Plasma samples from the Alzheimers Disease Neuroimaging Initiative were assayed with AD blood tests from C2N Diagnostics, Fujirebio Diagnostics, ALZPath, Janssen, Roche Diagnostics, and Quanterix.

View Article and Find Full Text PDF

Background: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level.

Methods: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics.

View Article and Find Full Text PDF

Introduction: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aβ) peptides in plasma and the extent to which they improve the prediction of amyloid positivity.

Methods: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aβ assays. Statistical tests were performed to determine whether the plasma Aβ measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype.

View Article and Find Full Text PDF

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors.

View Article and Find Full Text PDF

Background And Purpose: NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.

View Article and Find Full Text PDF

Unlabelled: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 μM).

View Article and Find Full Text PDF

The earliest stages of osteoarthritis are characterized by peripheral pathology; however, during disease progression chronic pain emerges-a major symptom of osteoarthritis linked to neuroplasticity. Recent clinical imaging studies involving chronic pain patients, including osteoarthritis patients, have demonstrated that functional properties of the brain are altered, and these functional changes are correlated with subjective behavioral pain measures. Currently, preclinical osteoarthritis studies have not assessed if functional properties of supraspinal pain circuitry are altered, and if these functional properties can be modulated by pharmacological therapy either by direct or indirect action on brain systems.

View Article and Find Full Text PDF

Experimental models of pain include tests of response thesholds to high intensity stimuli (acute pain tests) and changes in spontaneous or evoked behavioral responses in animals with peripheral injury or inflammation (persistent pain models). Acute thermal pain is modeled by the hot-plate and tail-flick test, while persistent pain can be modeled by the formalin test. This unit presents protocols for all three of these tests, including preparation of animals (rats or mice), administration of a compound being tested for its analgesic properties and data collection.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) channel antagonists may have clinical utility for the treatment of chronic nociceptive and neuropathic pain. We recently advanced a TRPV1 antagonist, 3 (AMG 517), into clinical trials as a new therapy for the treatment of pain. However, in addition to the desired analgesic effects, this TRPV1 antagonist significantly increased body core temperature following oral administration in rodents.

View Article and Find Full Text PDF

Recent scientific advances have enhanced our understanding of the role voltage-gated sodium channels play in pain sensation. Human data on Nav1.7 show that gain-of-function mutations lead to enhanced pain while loss-of-function mutations lead to Congenital Indifference to Pain.

View Article and Find Full Text PDF

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics.

View Article and Find Full Text PDF

An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro.

View Article and Find Full Text PDF

Based on the previously reported clinical candidate, AMG 517 (compound 1), a series of related piperazinylpyrimidine analogues were synthesized and evaluated as antagonists of the vanilloid 1 receptor (VR1 or TRPV1). Optimization of in vitro potency and physicochemical and pharmacokinetic properties led to the discovery of (R)-N-(4-(6-(4-(1-(4-fluorophenyl)ethyl)piperazin-1-yl)pyrimidin-4-yloxy)benzo[d]thiazol-2-yl)acetamide (16p), a potent TRPV1 antagonist [rTRPV1(CAP) IC50 = 3.7 nM] with excellent aqueous solubility (>or=200 microg/mL in 0.

View Article and Find Full Text PDF

A series of novel 4-oxopyrimidine TRPV1 antagonists was evaluated in assays measuring the blockade of capsaicin or acid-induced influx of calcium into CHO cells expressing TRPV1. The investigation of the structure-activity relationships in the heterocyclic A-region revealed the optimum pharmacophoric elements required for activity in this series and resulted in the identification of subnanomolar TRPV1 antagonists. The most potent of these antagonists were thoroughly profiled in pharmacokinetic assays.

View Article and Find Full Text PDF

A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice.

View Article and Find Full Text PDF

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity.

View Article and Find Full Text PDF

The vanilloid receptor-1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel that is predominantly expressed by peripheral neurons sensing painful stimuli. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Herein, we describe the synthesis and the structure-activity relationships of a series of 2-(4-pyridin-2-ylpiperazin-1-yl)-1H-benzo[d]imidazoles as novel TRPV1 antagonists.

View Article and Find Full Text PDF

Endocannabinoids acting at CB1 cannabinoid receptors (CB1) increase appetite. In view of the predominant presynaptic localization of CB1 in the brain, we tested the hypothesis that the orexigenic effect of endocannabinoids involves inhibition of the release of a tonically active anorexigenic mediator, such as the peptide product of the cocaine- and amphetamine-related transcript (CART). The CB1 antagonist rimonabant inhibited food intake in food-restricted wild-type mice, but not in their CART-deficient littermates.

View Article and Find Full Text PDF

Mouse lines with targeted disruption of the cocaine amphetamine-related transcript (CART), melanocortin receptor 3 (MCR3), or melanocortin receptor 4 (MCR4) were used to assess the role of each component in mediating the anorectic and metabolic effects of leptin, and in regulating the partitioning of nutrient energy between fat and protein deposition. Leptin was administered over a 3 day period using either intraperitoneal or intracerebroventricular routes of injection. The absence of MCR4 blocked leptin's ability to increase UCP1 mRNA in both brown and white adipose tissue, but not its ability to reduce food consumption.

View Article and Find Full Text PDF

Drug addiction results from a subversion of neural circuits that control motivation. Although the hedonic and addictive properties of psychostimulants and drugs of abuse are predominantly attributed to dopamine and glutamate, it is appreciated that other signaling molecules in the brain are important. This study suggests that cocaine- and amphetamine-regulated transcript (CART) peptides modulate the locomotor and motivational properties of psychostimulants.

View Article and Find Full Text PDF

The biological activity for a set of melanocortin-4 receptor (MC4R) agonists containing a piperazine core with an ortho-substituted aryl sulfonamide is described. Compounds from this set had binding and functional activities at MC4R less than 30 nM. The most selective compound in this series was >25,000-fold more potent at MC4R than MC3R, and 490-fold more potent at MC4R than MC5R.

View Article and Find Full Text PDF