Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4).
View Article and Find Full Text PDFThe microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs).
View Article and Find Full Text PDFChronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
October 2017
Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling.
View Article and Find Full Text PDFAlternative splicing of fibronectin increases expression of the EDA isoform of fibronectin (EDAFn), a damage-associated molecular pattern molecule, which promotes fibro-inflammatory disease through the activation of toll-like receptors. Our studies indicate that the fibronectin EDA domain drives two waves of gene expression in human dermal fibroblasts. The first wave, seen at 2 hours, consisted of inflammatory genes, VCAM1, and tumor necrosis factor.
View Article and Find Full Text PDFThe fibronectin matrix provides mechanical and biochemical information to regulate homeostatic and pathological processes within tissues. Fibronectin consists of independently-folded modules termed Types I, II and III. In response to cellular contractile force, Type III domains unfold to initiate a series of homophilic binding events which result in the assembly of a complex network of intertwining fibrils.
View Article and Find Full Text PDFThe fibronectin matrix plays a crucial role in the regulation of angiogenesis during development, tissue repair and pathogenesis. Previous work has identified a fibronectin-derived homophilic binding peptide, anastellin, as an effective inhibitor of angiogenesis; however, its mechanism of action is not well understood. In the present study, we demonstrate that anastellin selectively inhibits microvessel cell signaling in response to the VEGF165 isoform, but not VEGF121, by preventing the assembly of the complex containing the VEGF receptor and neuropilin-1.
View Article and Find Full Text PDFAngiogenesis is regulated by integrin-dependent cell adhesion and the activation of specific cell surface receptors on vascular endothelial cells by angiogenic factors. Lysophosphatidic acid (LPA) and sphingosine-1 phosphate (S1P) are bioactive lysophospholipids that activate G protein-coupled receptors that stimulate phosphatidylinositol 3-kinase (PI3K), Ras, and Rho effector pathways involved in vascular cell survival, proliferation, adhesion, and migration. Previous studies have shown that anastellin, a fragment of the first type III module of fibronectin, functions as an antiangiogenic peptide suppressing tumor growth and metastasis.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
November 2008
Background: Endostatin and anastellin, fragments of collagen type XVIII and fibronectin, respectively, belong to a family of endogenous inhibitors of angiogenesis which inhibit tumor growth and metastasis in a number of mouse models of human cancer. The mechanism of action of these inhibitors is not well understood, but they have great potential usefulness as non-toxic long-term therapy for cancer treatment.
Methods: In this study, we compare the anti-angiogenic properties of endostatin and anastellin using cell proliferation and transwell migration assays.
Binding of the N-terminus of fibronectin to assembly sites on the cell surface is an essential step in fibronectin fibrillogenesis. Fibronectin matrix assembly sites have customarily been quantified using an iodinated 70 kDa N-terminal fibronectin fragment. The 125I-70 K fragment is a less than ideal reagent because its preparation requires large amounts of plasma fibronectin and it has a fairly short shelf life.
View Article and Find Full Text PDFThe formation of a microvascular endothelium plays a critical role in the growth and metastasis of established tumors. The ability of a fragment from the first type III repeat of fibronectin (III(1C)), anastellin, to suppress tumor growth and metastasis in vivo has been reported to be related to its antiangiogenic properties, however, the mechanism of action of anastellin remains unknown. Utilizing cultures of human dermal microvascular endothelial cells, we provide evidence that anastellin inhibits signaling pathways which regulate the extracellular signal-regulated (ERK) mitogen-activated protein kinase pathway and subsequent expression of cell cycle regulatory proteins.
View Article and Find Full Text PDFThe fibronectin matrix contains cryptic sites which are thought to modulate cellular biological responses. One of these sites, located in fibronectin's first type III repeat (III1c), influences signaling pathways that are relevant to cytoskeletal organization and cell cycle progression. The purpose of this study was to identify possible mechanisms responsible for the effects of III1c on cell behavior.
View Article and Find Full Text PDF